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Abstract

The big data challenge is one unique opportunity for both data mining and database research and

engineering. A vast ocean of data are collected from trillions of connected devices in real time on a

daily basis, and useful knowledge is usually buried in data of multiple genres, from different sources,

in different formats, and with different types of representation. Many interesting patterns cannot

be extracted from a single data collection, but have to be discovered from the integrative analysis

of all heterogeneous data sources available. Although many algorithms have been developed to

analyze multiple information sources, real applications continuously pose new challenges: Data

can be gigantic, noisy, unreliable, dynamically evolving, highly imbalanced, and heterogeneous.

Meanwhile, users provide limited feedback, have growing privacy concerns, and ask for actionable

knowledge. In this thesis, we propose to explore the power of multiple heterogeneous information

sources in such challenging learning scenarios. There are two interesting perspectives in learning

from the correlations among multiple information sources: Explore their similarities (consensus

combination), or their differences (inconsistency detection).

In consensus combination, we focuse on the task of classification with multiple information

sources. Multiple information sources for the same set of objects can provide complimentary pre-

dictive powers, and by combining their expertise, the prediction accuracy is significantly improved.

However, the major challenge is that it is hard to obtain sufficient and reliable labeled data for

effective training because they require the efforts of experienced human annotators. In some data

sources, we may only have a large amount of unlabeled data. Although such unlabeled information

do not directly generate label predictions, they provide useful constraints on the classification task.

Therefore, we first propose a graph based consensus maximization framework to combine multiple

supervised and unsupervised models obtained from all the available information sources. We fur-

ther demonstrate the benefits of combining multiple models on two specific learning scenarios. In

ii



transfer learning, we propose an effective model combination framework to transfer knowledge from

multiple sources to a target domain with no labeled data. We also demonstrate the robustness of

model combination on dynamically evolving data.

On the other hand, when unexpected disagreement is encountered across diverse information

sources, this might raise a red flag and require in-depth investigation. Another line of my thesis

research is to explore differences among multiple information sources to find anomalies. We first

propose a spectral method to detect objects performing inconsistently across multiple heterogeneous

information sources as a new type of anomalies. Traditional anomaly detection methods discover

anomalies based on the degree of deviation from normal objects in one data source, whereas the

proposed approach detects anomalies according to the degree of inconsistencies across multiple

sources. The principle of inconsistency detection can benefit many applications, and in particular,

we show how this principle can help identify anomalies in information networks and distributed

systems. We propose probabilistic models to detect anomalies in a social community by comparing

link and node information, and to detect system problems from connected machines in a distributed

systems by modeling correlations among multiple machines.

In this thesis, we go beyond the scope of traditional ensemble learning to address challenges

faced by many applications with multiple data sources. With the proposed consensus combina-

tion framework, labeled data are no longer a requirement for successful multi-source classification,

instead, the use of existing labeling experts is maximized by integrating knowledge from relevant do-

mains and unlabeled information sources. The proposed concept of inconsistency detection across

multiple data sources opens up a new direction of anomaly detection. The detected anomalies,

which cannot be found by traditional anomaly detection techniques, provide new insights into the

application area. The algorithms we developed have been proved useful in many areas, including

social network analysis, cyber-security, and business intelligence, and have the potential of being

applied to many other areas, such as healthcare, bioinformatics, and energy efficiency. As both the

amount of data and the number of sources in our world have been exploding, there are still great

opportunities as well as numerous research challenges for inference of actionable knowledge from

multiple heterogeneous sources of massive data collections.
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Chapter 1

Introduction

Modern technology has brought enormous benefits to almost all people, but at the same time

makes our world a highly complex global system. Since the start of this decade, many issues have

surfaced: the problems of global climate change and energy shortage, new security concerns ranging

from identity theft to terrorism as well as imminent needs for better and more efficient healthcare

systems. On the other hand, trillions of connected digital devices are producing a vast ocean of

data. The flood of information comes from multiple heterogeneous information sources, and we

need to discover knowledge from such huge amount of data quickly and effectively.

In this thesis, we explore the power of heterogeneous information sources in effective knowledge

discovery. In this chapter, we first present motivating examples which cover a wide variety of

applications, and discuss the major challenges in learning from multiple sources (Section 1.1). In

Section 1.2, we summarize the problems, algorithmic contributions and applications of the proposed

approaches.

1.1 Motivation

From the old story of “blind men and an elephant”, we can learn the importance of capturing

a big picture instead of focusing on one single perspective. In the story, a group of blind men

touch different parts of an elephant to learn what it is like. Each of them makes a judgment about

the elephant based on his own observation. For example, the man who touched the ear said it

was like a fan while the man who grabbed the tail said it was like a rope. Clearly, each of them

just got a partial view and did not arrive at an accurate description of the elephant. However, as

they capture different aspects about the elephant, we can learn the big picture by integrating the

knowledge about all the parts together.
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In this thesis, we consider multiple data sources as different perspectives of observing the

same set of objects. Depending on the specific data mining tasks, multiple information sources

can refer to data collected from different places, data of different formats, or data that capture

different aspects of the objects. For example, we can collect information about movies from many

places, including movie review and rental websites (e.g., IMDB, Netflix, RottenTomato, Yahoo!

Movies), or encyclopedia webistes (e.g., Wikipedia), or online social networks or forums (e.g.,

twitter), or fansites of movie stars. Such information describes different aspects of movies, including

descriptions, cast, plots, reviews, tags, and involves different types of data, such as video, audio

and text. To provide better web services or help film distributors in decision making, we need

to conduct integrative analysis of all the information sources. For example, users’ favorite movie

genres can be inferred from their viewing history, ratings, reviews, or discussions on forums, and

a knowledge integration framework that takes all these aspects into consideration usually achieves

better results.

In numerous real-world applications, we have to combine and synthesize a variety of different

information sources to make better decisions. Moreover, many interesting patterns cannot be

extracted from a single perspective, but have to be discovered from the integrative analysis of all

heterogeneous information sources available. We list a few more motivating applications as follows.

Social Media Analysis

With the explosive use of social networking, online video, digital photography and mobile

phones, we have huge amount of information transferred across the globe everyday. As billions of

individuals are using social media, numerous flows of user-generated data are captured today as

never before. Such huge amount of data obtained from users reveals what they see, what they think

and what they want. Numerous companies and organizations can benefit from the joint analysis of

multiple channels of social media. For example, we want to find out user intent or behavior from

their social networks, online blogs, reviews, and query logs for more effective customer targeting.

Cyber Security

The popularity of web services has attracted numerous spammers who try to comprise host

machines with malicious software, such as viruses, worms, trojan horses and spyware. Moreover,

new types of malicious activities are emerging with new applications on the Internet including
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online social networks, cloud computing and file sharing services. Therefore, machines connected

to Internet are facing a significant risk. To detect security violations and spammers in a timely

manner, we need to analyze network traffic, CPU usage, power consumption, software logs and

many other information sources together.

Healthcare Systems

Many problems in the current healthcare systems: Rising costs, limited access, high error rates,

lack of coverage, long response time, and lengthy development of new medicine, can be improved if

we integrate the data and information from diagnosis, drug discovery, treatment, patient symptoms,

medical bills, and health insurance plans. For example, to judge a person’s health status more

accurately, we have to make decision based on all of his health information including demographic

characteristics, everyday lifestyle patterns, physiological data, and medical history.

Energy Efficiency

There has been an enormous increase in the demand for energy as a result of industrial develop-

ment and population growth. It calls for less waste and more efficient use of energy. As sensors are

put into home meters, pipelines and networks, we can collect a vast amount of heterogeneous energy

management and usage data. Multi-source analysis techniques can turn the data into knowledge,

which can help individuals, businesses, and utility companies make smarter decisions on how to

consume energy and manage loads wisely.

As rich heterogeneous data can be collected in nearly every industry, people began to recognize

the importance of integrating multiple data sources. In the field of data integration and data fusion,

many algorithms have been developed to effectively integrate or combine raw data. Many studies

focused on how to match the schemas of different data sources, detect entities that refer to the same

real-world objects, answer queries by searching from multiple data sources, or combine multiple

redundant information sources into one reliable source. In numerous applications that own multiple

data sources, it is crucial not only to integrate or combine multiple data sources, but also consolidate

different concepts for intelligent decision making. Therefore, in the field of knowledge integration,

many algorithms have been developed to merge and synthesize models, rules, patterns obtained

from multiple sources by reconciling their differences. These methods conduct classification or

clustering from multiple data sources to identify more reliable and meaningful label predictions
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or clusters from the joint analysis of multiple information sources. An overview of existing data

integration and knowledge integration methods can be found in Chapter 2.

Despite these efforts, numerous critical challenges still remain unaddressed. Data are becoming

heterogeneous, large-scale, noisy, incomplete, highly imbalanced and dynamically evolving. More-

over, lack of supervision, growing privacy concerns and demands for actionable and interpretable

knowledge add to the complexity. In particular, we focus on the following challenges in this thesis:

• Incompatible formats. Unleashing the full power of multiple information sources is a very

challenging problem when schemas used to represent each data collection are different (het-

erogeneous information sources). For example, information regarding a patient’s symptoms

can be found from his lab test results, physician notes and ultrasound images.

• Lack of groundtruths. The main bottleneck of many learning algorithms is that a large,

often prohibitive, number of labeled data are needed to build an accurate classifier. In many

disciplines, this cannot be achieved due to the high cost of manual labeling.

• Concept Evolution. Many applications generate continuously arriving data, whose distribu-

tion is evolving in an unforseen way. For example, both normal network traffic features and

spam characteristics evolve over time. It is quite difficult to make accurate predictions on

such evolving data.

• Imbalanced Distribution. Skewed class distributions in classification can cause serious prob-

lems for many learning algorithms where the minority class is usually ignored. However,

misclassifying minority objects invokes a higher cost, for example, misclassify an infected

machine to be a normal host can cause serious damage to the computer network.

• Incomplete and Noisy Data. Due to the nature of noisiness, inconsistency, dynamics, and

inter-dependency of the physical world data, each data source could contain glitches, incon-

sistencies, errors, and missing values.
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Figure 1.1: A Roadmap of Our Work in Mining Multiple Information Sources

1.2 Thesis Summary

In this thesis, we propose to explore the power of multiple heterogeneous information sources in

challenging learning scenarios. Figure 1.1 shows a roadmap of our work. There are two interesting

perspectives in learning from the correlations among multiple information sources: Explore their

similarities (consensus combination), or their differences (inconsistency detection).

Part I: Consensus Combination

In this part, we focus on the task of classification with multiple information sources. Multiple

information sources for the same set of objects can provide complimentary predictive powers, and

by combining their expertise, the prediction accuracy is significantly improved. We propose a

graph based consensus maximization framework to combine multiple supervised and unsupervised
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models, and also develop model combination algorithms for two specific learning scenarios.

Consensus Combination of Multiple Heterogeneous Models (Chapter 3). Ensemble learning has

emerged as a powerful method for combining multiple models. However, due to the high costs

of manual labeling, it is hard to obtain sufficient and reliable labeled data for effective training.

Meanwhile, lots of unlabeled data exist in these sources, and we can readily obtain multiple unsu-

pervised models. Although unsupervised models do not directly generate a class label prediction

for each object, they provide useful constraints on the joint predictions for a set of related objects.

Therefore, incorporating these unsupervised models into the ensemble of supervised models can

lead to better prediction performance. We study ensemble learning with outputs from multiple

supervised and unsupervised models, a topic where little work has been done. We propose to con-

solidate a classification solution by maximizing the consensus among both supervised predictions

and unsupervised constraints. We cast this ensemble task as an optimization problem on a bipar-

tite graph, where the objective function favors the smoothness of the predictions over the graph,

but penalizes the deviations from the initial labeling provided by the supervised models. We solve

this problem through iterative propagation of probability estimates among neighboring nodes and

prove the optimality of the solution. With the proposed framework, labeled data are no longer a

requirement for successful multi-source classification, instead, the use of existing labeling experts

is maximized by integrating knowledge from relevant domains and unlabeled information sources.

Consensus Combination for Transfer Learning (Chapter 4). In many applications, it is expen-

sive or impossible to collect enough labeled data for accurate classification in the domain of interest

(target domain), however, there are abundant labeled data in some relevant domains (source do-

mains). For example, when training a spam filter for a particular user, if we don’t have any labeled

data from the user for training, we can only rely on spam and ham emails from multiple public

resources. Therefore, we want to transfer knowledge from multiple relevant source domains to

the target domain. We notice that different classifiers trained from these source domains contain

different knowledge about the target domain and thus have different advantages. The challenge is

how to dynamically select the model that best represents the true target distribution underlying

each example in the target domain. To solve this problem, we propose a locally weighted ensemble

framework to adapt useful knowledge from multiple source domains to the target domain. The
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weights of source domains are dynamically assigned according to each domain’s predictive power

on each target object by comparing neighborhood graphs constructed from source and target do-

mains. We show that the proposed method can successfully identify the knowledge from source

domains that is useful to predict in the target domain and transfer such information to the target

domain.

Consensus Combination for Stream Classification (Chapter 5). Many real applications generate

continuously arriving data, known as data streams. To help decision making, we want to correctly

classify an incoming data record based on the model learnt from historical labeled data. The

challenge is the existence of distribution evolution or concept drifts, where one actually may never

know either how or when the distribution changes. We propose a robust model averaging frame-

work combining multiple supervised models, and demonstrated both formally and empirically that

it can reduce generalization errors and outperform single models on stream data. We also consider

a more challenging situation in stream data classification, where the class distributions in the data

are skewed, i.e, there are few positives but lots of negatives, such as network intrusions (positives)

and normal records (negatives) in network traffic. By estimating posterior probabilities using an en-

semble of models to match the distributions over under-samples of negatives and repeated samples

of positives, the proposed framework can significantly improve the reliability of label predictions

on the more important positive class (e.g., the intrusions).

Part II: Inconsistency Detection

Integrating multiple models gives us the gains in classification performance. On the other hand, by

exploring the differences among sources, we can identify something unusual and interesting, and

thus another line of this thesis is to detect anomalies or inconsistencies across multiple information

sources. We propose a general framework to detect inconsistencies across multiple heterogeneous

information sources, as well as approaches to find objects performing inconsistently in information

networks and distributed systems.

Inconsistency Detection across Multiple Heterogeneous Sources (Chapter 6). We propose to

detect objects that have inconsistent behavior among multiple heterogeneous sources. On each
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of the information sources that describe a set of objects, a relationship graph can be derived to

characterize the pairwise similarities between objects where the edge weight indicates the degree

of similarity. Clearly, objects form a variety of clusters or communities based on each similarity

relationship. However, there are some objects that fall into different clusters with respect to

different sources. Such objects which perform inconsistently can be regarded as anomalies. For

example, there exist movies that are expected to be liked by kids by genre, but are liked by grown-

ups based on user viewing history. To identify such objects, we compute the distance between

different eigen decomposition results of the same object with respect to different sources as its

anomalous score, and give interpretations from the perspectives of constrained spectral clustering

and random walks over graph. Inconsistency detection can detect anomalies that cannot be found

by traditional anomaly detection techniques and provide new insights into the application area.

The proposed approach can benefit many different fields where such diverse information sources

are available to capture object properties and similarity relationships.

Inconsistency Detection for Information Networks (Chapter 7). Linked or networked data are

ubiquitous in many applications. Examples include web data or hypertext documents connected

via hyperlinks, social networks or user profiles connected via friend links, co-authorship and citation

information, blog data, movie reviews and so on. In these datasets (called information networks),

closely related objects that share the same properties or interests form a community. For example,

a community in blogsphere could be users mostly interested in cell phone reviews and news. Outlier

detection in information networks can reveal important anomalous and interesting behavior that are

not obvious if community information is ignored. An example could be a low-income person being

friends with many rich people even though his income is not anomalously low when considered over

the entire population. We introduce the concept of community outliers and propose an efficient

solution by modeling networked data as a mixture model composed of multiple normal communities

and a set of randomly generated outliers. The probabilistic model characterizes both data and

links simultaneously by defining their joint distribution based on hidden Markov random fields

(HMRF). Maximizing the data likelihood and the posterior of the model gives the solution to the

outlier inference problem. Experimental results demonstrate importance of this concept as well as

the effectiveness and efficiency of the proposed approach.
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Inconsistency Detection for System Debugging (Chapter 8). In today’s large-scale distributed

systems, the same type of information may be collected from each machine in the system. Although

some knowledge can be extracted from each individual information source, a much richer body of

knowledge can only be obtained by exploring the correlations or interactions across different sources.

For example, the correlations between measurements collected across the distributed system can

be used to infer the system behavior, and thus a reasonable model to describe such correlations is

crucially important in detecting and locating system problems. We propose a transition probability

model to characterize pairwise measurement correlations. Different from existing methods, the

proposed solution can discover both the spatial (across system measurements) and temporal (across

observation time) correlations, and thus such a model can successfully represent the system normal

profiles. Whenever a record cannot be explained by the correlation model, it represents an anomaly.

The effectiveness of this framework is demonstrated in its ability of detecting anomalous events

and locating problematic sources from real monitoring data of three companies’ infrastructures.

Finally, we conclude this thesis by summarizing our contributions and discussing future direc-

tions in Chapter 9. In summary, we have proposed important learning problems motivated by

real challenges, and contributed several key principles and algorithms to the field of multi-source

learning:

• We demonstrate the benefits of analyzing multiple information sources simultaneously from

both theoretical and experimental perspectives. The advantages of multi-source mining are

shown in a variety of difficult learning scenarios.

• To solve each problem, we transform heterogeneous information sources to a robust represen-

tation summarizing the key information, formulate the problem as an optimization problem

or a probabilistic model, and solve it using the combination of multiple techniques, such as

block coordinate descent, eigen decomposition, iterated conditional modes, and expectation

maximization techniques. We also give interpretations of the proposed methods from other

perspectives including random walks, spectral embedding and spectral clustering.

• We have developed several core algorithms for integrating knowledge from multiple data

sources. We systematically study the consensus combination problem by proposing a graph
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based approach to combine multiple supervised and unsupervised models, a locally weighted

ensemble framework for transfer learning, and a model averaging approach for stream data

classification. We propose to detect inconsistency across multiple sources by developing a

spectral framework that capture source-wise inconsistencies, a probabilistic model of commu-

nity outliers in information networks and a statistical model of measurement correlations in

distributed systems.

As demonstrated in many problems, the proposed algorithms can extract key knowledge from

multiple heterogeneous sources. For example, our algorithms have been effectively applied to the

following applications:

• Social Media. The consensus combination methods combine heterogeneous channels of in-

formation and thus provide robust and accurate solutions to social media analysis. Our

proposed approaches achieve high accuracy, efficiency, and scalability on a variety of applica-

tions including document categorization, sentiment analysis, researcher profiling, and movie

recommendation. Also, we have identified meaningful anomalies from publication networks

and movie networks through inconsistency detection.

• Cyber-security. Consensus combination techniques have been used to integrate heterogeneous

anomaly detectors into a more robust detector. The stream ensemble model is demonstrated

useful in detecting network intrusions and malware. Inconsistency detection across multiple

machines is successfully applied on distributed systems to detect system-wide problems.

Besides these applications, the algorithms have the potential of being applied to many different

fields including healthcare, bioinformatics, business intelligence and energy efficiency. This thesis

show that learning from multiple information sources simultaneously is the key solution to the

effective knowledge acquisition.
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Chapter 2

An Overview of Mining Multiple
Information Sources

Recent technology developments have made it possible and affordable for us to gather and store a

huge amount of data from multiple sources. In the past, researchers proposed many approaches to

handle multiple information sources.

We summarize various learning problems in Table 2.1. One dimension represents the data

mining tasks studied in this thesis, including supervised learning (classification), unsupervised

learning (clustering), semi-supervised learning, and anomaly detection. The methods developed for

each data mining task are either based on single-model (or single-source), or multi-model (multi-

source). As shown in this table, the two general learning frameworks proposed in this thesis,

e.g., consensus maximization and inconsistency detection, can be regarded as a multi-source semi-

supervised learning approach and a multi-source anomaly detection approach respectively. Little

work has been done on these two topics.

In this chapter, we give an overview of the methods presented in Table 2.1. We first briefly

introduce single-model data mining techniques in Section 2.1. Then we review existing work on

raw data level integration: Data integration and data fusion, in Section 2.2. After that, we discuss

multi-source classification and clustering in Sections 2.3 and 2.4 respectively. In Section 2.5, we

discuss some other studies in the general field of multi-source mining.

2.1 Single-model Data Mining Methods

Many efforts have been devoted to developing single-model data mining algorithms. In this section,

we review these techniques for classification, clustering, semi-supervised learning and anomaly

detection.
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Table 2.1: An Overview of Single-Model and Multi-Model Mining Algorithms
Classification Clustering Semi-Supervised Learning Anomaly Detection

SVM K-means Graph-based Distance-based
single-model Logistic Regression Spectral Clustering Transductive SVM Density-based

... ... ... ...

Ensemble Learning Clustering Ensemble
multi-model Multi-view Learning Multi-view Clustering

Consensus Inconsistency

... ...
Combination Detection

Classification Classification, or supervised learning, tries to infer a function that maps feature

values into class labels from training data, and apply the function to data with unknown class labels.

The function is called a model or classifier. In general, a supervised learning algorithm defines a

hypothesis space to search for the correct model as well as the generalization error of the model

on future test data, and search for the model that minimizes generalization error in the space. A

variety of classification algorithms have been developed [22], including Support Vector Machines,

linear regression, logistic regression, Naive Bayes, decision trees, k-nearest neighbor algorithm, and

Neural Networks, and they differ in the hypothesis space and generalization error formulation.

Clustering Clustering, or unsupervised learning, is the task of partitioning a set of objects into

multiple clusters so that objects within a cluster are similar to each other while objects in different

clusters are dissimilar [92]. As the notion of similarity varies among different clustering algorithms,

the clusters found by different algorithms can be quite different in their properties. Some well-

known clustering algorithms include hierarchical clustering, partitional clustering (e.g., K-means),

density-based clustering (e.g., DBSCAN, OPTICS), and spectral clustering algorithms [82].

Semi-supervised learning Recent studies reveal that unlabeled information can be combined

with labeled information to improve the accuracy of supervised learning, which leads to semi-

supervised and transductive learning. The study of semi-supervised learning [187] is motivated by

the fact that labeled data are hard to acquire but there are usually plenty of unlabeled data. Some

widely used semi-supervised learning methods include EM with generative mixture models [39],

transductive support vector machines [96, 189], and graph-based methods [186, 182]. Let x and y

denote the feature vector and the class label respectively. In these methods, the unlabeled informa-

tion is usually taken into account in estimating P (x), which is used to influence the estimation of
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P (y|x). Some assumptions need to be made, for example, many semi-supervised learning methods

assume that the classification boundary reside in areas with low P (x).

Different from the proposed consensus maximization framework, semi-supervised learning (SSL)

algorithms only take one supervised source (i.e., the labeled objects) and one unsupervised source

(i.e., the similarity graph), and thus it cannot be applied to combining multiple models. Some

SSL methods [78] can incorporate results from an external classifier into the graph, but obviously

they cannot handle multiple classifiers and multiple unsupervised sources. To apply standard SSL

algorithms on our problem, we must first fuse all supervised models into one by some ensemble

approach, and fuse all unsupervised models into one by defining a similarity function. Such a

compression may lead to information loss, whereas the proposed method retains all the information

and thus consensus can be reached among the outputs of all the base models.

Anomaly detection Anomaly detection, sometimes referred to as outlier detection or novelty

detection, is the procedure of identifying aberrant or interesting objects whose characteristics de-

viate significantly from the majority of the data. It is widely used in a variety of domains, such

as intrusion detection, fraud detection, health monitoring, and so on. It is an important task

because anomalies usually represent significant and critical points, such as intrusions found from

network traffic, identity theft in credit card transactions and tumors detected from medical images.

Therefore, the problem of anomaly detection has been widely studied and existing methods can

be roughly divided into the following categories [31]: 1) Model-based techniques [48, 145] where a

classifier or a clustering model is learnt to model normal behavior; 2) Proximity-based techniques

[104, 27, 120] where objects that are far away from their neighbors are detected as anomalies; 3)

Statistical methods [126] where a statistical model is used to fit majority of the data and anoma-

lous objects are assumed to occur in low probability regions; 4) Information theoretic techniques

[4] which identify a set of objects that induce irregularities in the information content of the data

set; 5) Spectral techniques [89, 110] which project objects into a low-dimensional space so that

normal and anomalous objects are easy to separate.

The techniques discussed above primarily focus on identifying objects that are dissimilar to most

of the other objects from a single data source. In the proposed inconsistency detection framework,

we aim at detecting objects that have “inconsistent behavior” across multiple information sources.
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The detected anomalies can exhibit normal behavior judging from one data source, but perform

abnormally when looking across multiple sources. This definition differs from that of traditional

anomaly detection, and thus provides a novel perspective to the problem of detecting critical

exceptions from data.

2.2 Data Integration and Data Fusion

The goal of data integration is to combine data from multiple sources and provide users a uni-

fied view. Most of the data integration research focuses on matching schemas of multiple sources,

and conduct query processing from multiple sources [80, 45]. Data integration system [112] can

be regarded as a triple < G, S, M > where G is the global schema, S is the heterogeneous set

of source schemas, and M is the mapping that maps queries between the source and the global

schemas. Besides schema-level matching, people also investigated how to match the same entity

across different data sources. Entity resolution [106, 171, 19, 108], sometimes referred to as object

matching, duplicate identification, record linkage, or reference reconciliation, is the task of identi-

fying the same real-world objects from multiple sources by evaluating similarities among objects

or learning from labeled entity pairs that have been matched. Another important issue in multiple

source data integration is the quality of data sources [10]. Methods have been developed to identify

trustworthy information sources when integrating the facts obtained from the available information

sources [177].

While data integration focuses on matching schemas to assist query processing over multiple

databases, data or information fusion combines multiple redundant noisy information sources into

a more reliable source [81, 141]. There are different levels of fusion. For example, data-level fusion

combines several sources of raw data into a more robust representation, whereas decision-level fusion

only integrates decisions obtained from multiple sources. Our proposed consensus maximization

framework can be regarded as a decision-level fusion method, but different from existing work, we

are the first to propose to combine both supervised and unsupervised information sources.
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2.3 Ensemble and Multi-view Learning

In supervised learning, classification ensemble approaches [12, 44, 137, 109, 147] train multiple

models from training data and combine their predictions. Although ensemble learning methods

are not explicitly dealing with multiple data sources, they share a similar principle with multi-

source learning: Combine complementary predictive power of multiple models is superior to using

one single model. There are two critical components in ensemble learning: Training base models

and learning their combinations. The goal is to derive diversified base models and minimize the

generalized error by combining these models. Some of the methods, e.g., boosting [55], bayesian

model averaging [86], and rule ensemble [56], learn both the base models and the combination from

the labeled data, while the others including bagging [25], random forests [26], and random decision

tree [51], train multiple base classifiers from the labeled data but combine the base models through

majority voting. Methods such as mixture of experts [91] and stacked generalization [173] try to

obtain a meta-learner on top of the model output by using the labels of the raw data as feedback.

In [30], selection of base models in ensemble learning is studied. Ensemble learning is demonstrated

useful in many data mining competitions (e.g., Netflix contest1, KDD cup2, ICDM contest3) and

real-world applications. The methods reviewed above focus on combining models learnt from a

single data source, instead of synthesizing knowledge from multiple sources.

The emergence of multi-source applications motivate the study of learning from data with

multiple views where each view describes one aspect of the objects. In multi-view learning, a joint

model is learnt from both labeled and unlabeled data of multiple sources. Most of the work focuses

on the scenarios with two views. The basic assumption is that a small amount of labeled data and

lots of unlabeled data are available, and there exist two independent views with compatible target

functions for the task of classification. We can learn two classifiers from the two views and reduce

the search space to where the two classifiers agree. The proposed methods either search for the

compatible hypothesis explicitly [23, 132] or search in a reduced space where the correlations of two

views are maximized [53, 185], or use a regularization term to enforce that multiple classifiers agree

with each other on the unlabeled data [37, 151, 57, 124, 3]. These approaches exploit multiple
1http://www.netflixprize.com/
2http://www.kddcup-orange.com/
3http://www.cs.uu.nl/groups/ADA/icdm08cup/
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redundant views to effectively learn from unlabeled data. Because the weaknesses of one view

complement the strengths of the other, multi-view learning has been shown to be advantageous

when compared to learning with only a single view. However, multi-view learning cannot be easily

extended to the cases where multiple sources have multiple semantics and formats. In contrast,

our proposed consensus maximization framework, which synthesizes high-level knowledge obtained

from multiples sources, can be applied to numerous applications with heterogeneous information

sources.

All these studies aim at solving one problem, where multiple information sources can contribute

to the task. On the contrary, multi-task learning [29, 40] deals with multiple tasks simultaneously

by exploiting dependence among tasks, which has a different problem setting from this thesis.

2.4 Clustering Ensemble and Multi-view Clustering

Similar to the supervised learning case, we first discuss related work on combining multiple unsu-

pervised clustering models. In unsupervised learning, many clustering ensemble methods [74] have

been developed to find a consensus clustering from multiple partitionings. The research focus is to

derive multiple clustering partitions and combine their output to minimize the disagreement. Dif-

ferent from supervised ensembles, in unsupervised ensembles, the correspondence between clusters

in different clustering solutions is unknown, and thus the number of possible clustering solutions is

exponential. Existing clustering ensemble approaches differ in the choices of consensus definitions

and the representation of the base model output. The base model outputs are usually represented

as categorical features, but they can also be summarized in a graph [155, 54] or a three-dimensional

array [152]. There exist some generative approaches which try to maximize the likelihood of base

model output [138, 163, 164], whereas most of the methods formulate consensus clustering as an

optimization problem using information-theoretic [155], median partition [122, 116] or correlation

clustering [75] objective functions.

Clustering ensemble methods do not work on multi-source data directly. To conduct clustering

on data with multiple views, people explore the joint analysis of multiple views to compute a

global clustering solution [21, 183, 121, 33]. The basic principle is that the same object should be

assigned to the same cluster under different views. These approaches either extract a set of shared
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features from the multiple views and then apply any traditional clustering algorithm, or exploit

the multiple views of the data as part of the clustering algorithm by utilizing information from the

other view to enhance clustering of each view. With the assumption that objects share the same

clustering structure across views, multi-view clustering can identify such shared clustering more

effectively than clustering two views separately. Note that both clustering ensemble and multi-view

clustering aim at conducting clustering, whose goal is thus different from the proposed consensus

maximization and inconsistency detection problems.

The ensemble techniques have been mostly studied in supervised and unsupervised learning

communities separately, besides some general reviews [134]. In this thesis, we propose to combine

the power of all sources when both supervised and unsupervised models are available for a single

task and show that such integration leads to better performance. We also investigate the problem

of comparing multiple sources to identify inconsistencies across sources.

2.5 Other Multi-Source Mining Studies

Multiple information sources contain rich knowledge. Besides classification and clustering from

multiple sources, there exist studies on other aspects of multi-source mining. In the field of pattern

mining, most efforts have been devoted to comparing frequent patterns across multiple sources.

The patterns of interest are the ones that have the most significant difference among multiple

data sets. Specifically, emerging patterns or contrast patterns [46, 13, 168] are defined as itemsets

whose supports increase significantly from one source/class to another. Most of the work in this

field deal with transaction datasets and their goal is to identify interesting rules through support

comparisons. Wang et al. [161] consider the problem of ranking in heterogeneous domains where

preference information from a source domain can be transferred to the target domain for more

effective ranking. In [113], a cross-domain collaborative filtering technique was proposed to transfer

knowledge from one domain to another domain to alleviate the rating sparsity problem. Metric

learning was also studied in the scenario of multiple data sources where a joint embedding projection

is learnt from multiple views of data [83, 139].
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Part I

Consensus Combination
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Chapter 3

Consensus Combination of Multiple
Heterogeneous Models

Given models obtained from multiple heterogeneous sources, how can we effectively combine them

for more accurate label predictions? In this part, we present our studies on combining multiple

sources through exploring their similarities. There usually exist multiple information sources con-

tributing to the classification task, and they provide complementary knowledge and we should

combine their expertise for better predictions. In this chapter, we propose and solve a novel prob-

lem of consensus maximization among multiple supervised and unsupervised models. In Chapters

4 and 5, we present two targeted solutions of model combination for transfer learning and stream

classification scenarios.

The success of ensemble techniques has been proven theoretically and observed in real practice.

However, the major challenge is that it is hard to obtain sufficient and reliable labeled data for

effective training because they require the efforts of experienced human annotators. To tackle this

challenge, we study the problem of consolidating multiple supervised and unsupervised information

sources by negotiating their predictions to form a final superior classification solution [67, 68]. The

proposed method can utilize all the available sources in the consensus combination framework,

no matter they contain labeled or unlabeled information. A global optimal label assignment for

objects is derived by maximizing consensus among the given models. This consensus maximization

approach crosses the boundary between supervised and unsupervised learning, and its effectiveness

has been shown in many real-world problems, where the classification accuracy is significantly

improved. In particular, the proposed method has been used to solve the following problems:

1) user-generated video classification based on video, audio, and text features [140]; 2) decision

fusions of heterogeneous sensor nodes in sensor networks [156]; and 3) combination of heterogeneous

anomaly detectors to improve performance over botnet or network traffic anomaly detection in

cyber-security areas [65].
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Table 3.1: Predicting Users’ Favorite Movie Types
Supervised UnsupervisedPerson

M1 M2 . . . Mr Mr+1 Mr+2 . . . Mm
Consensus

Mary Comedy Comedy . . . Thriller Cluster2 Cluster1 . . . Cluster3 Comedy
Jack Comedy Comedy . . . Comedy Cluster2 Cluster2 . . . Cluster3 Comedy
Lucy Comedy Thriller . . . Comedy Cluster1 Cluster3 . . . Cluster1 Comedy
Mike Thriller Thriller . . . Thriller Cluster3 Cluster1 . . . Cluster1 Thriller
Jim Action Thriller . . . Action Cluster3 Cluster2 . . . Cluster1 Thriller
Bob Action Action . . . Action Cluster1 Cluster1 . . . Cluster2 Action
Tom Thriller Comedy . . . Action Cluster3 Cluster1 . . . Cluster2 Thriller

3.1 Overview

Suppose there are a set of objects that need to be classified into corresponding categories. The

predictive information comes from multiple data sources, each of which either transfers label infor-

mation from relevant domains (supervised classification), or derives grouping constraints from the

unlabeled target objects (unsupervised clustering). Since these models are derived from diversified

and heterogeneous sources, the strength of one usually complements the weakness of the other, and

thus maximizing the agreement among them can significantly boost the performance. We illustrate

how multiple sources provide “complementary” expertise and why their consensus combination

produces more accurate results through a real example.

Suppose we have seven users and they are using a movie recommendation service. Our goal

is to predict each user’s favorite movie type as one of {comedy, thriller, action}. Naturally, the

first data source for the task involves the movies they have watched, which can be collected from

movie review or rental websites. If Mary watched more comedy movies than the other types of

movies, we can say that her favorite movie type is comedy. If Bob watched a lot of action movies,

his favorite is action. In general, we can infer a user’s favorite movie type as the type of the movies

he’s watched the most often. However, we only have limited access to the list of movies users have

seen in practice. A user might have watched 100 movies, but we only know 20 of them. Then the

decision made based on such partial information will contain errors. We summarize the decisions

made by this movie type data source in Column M1 of Table 3.1. We can make such predictions

based on some other data sources about the users and the movies, such as user taggings and

personal information of users. Each of them gives a useful but not perfect classification solution.

We summarize the decisions made by such supervised data sources in Columns M1 to Mr of Table
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3.1. Mi denotes a supervised model obtained from the i-th data source, and the corresponding

column shows the prediction results of applying Mi on the seven users.

We can also collect information about how users interact with each other regarding movies

from some movie discussion forums or social networks. Based on this data source, we can partition

users into several clusters based on their relationships, as shown in Column Mr+1 of Table 3.1. For

example, Mary and Jack interact a lot on movies. Thus they are put into the same cluster, and

they are more likely to like the same type of movies. This data source provides useful constraints

on users’ favorite movie type predictions. We should try to assign the same movie type to users

in one cluster. However, the clustering constraint may not always be correct because sometimes

users interact on issues not related to movie types, for example, movie theaters or movie stars.

Again, it is a useful but not perfect data source. We can receive multiple clustering solutions from

multiple such sources, and we summarize the results obtained from these unsupervised data sources

in Columns Mr+1 to Mm of Table 3.1. Each of them clusters the seven users into three clusters

and provides the constraints.

In summary, we have multiple data sources for the task of movie recommendation. Due to

distributed computing, privacy preserving or knowledge reuse reasons, we don’t have access to raw

data of each source, instead, each source just provides labeling or grouping results on the seven users.

A labeling solution simply predicts each user’s favorite movie type, whereas a clustering solution

gives the constraint. Each of the solutions is derived based on partial information. However,

these solutions are based on heterogeneous sources and capture different aspects about the label

predictions of the target objects. Therefore, they do complement each other. Given all these

solutions, our goal is to combine them into a consolidated solution (as shown in the last column of

Table 3.1), which leverages different information sources, gives the global picture and thus is more

accurate than each base solution derived from a single source.

Similar situation exists in many applications. When we predict people’s occupations, we can

integrate information from multiple social network websites. To predict whether a user will buy a

product, we can look at his purchase history, personal information and social networks. When we

predict a researcher’s area, the information we have include the journals/conferences he published

in, the keywords of the publications and co-authorship information. In all these examples, since
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multiple information sources give complementary labeling and clustering solutions, we seek to

integrate knowledge from these sources for better predictions.

Formally, we consider the general problem of combining the outputs of multiple supervised

and unsupervised models to improve prediction accuracy. Suppose we have a set of objects

X = {x1, x2, . . . , xn} from c classes. There are m models that provide information about the

classification of X. The first r of them are (supervised) classifiers, and the remaining are (unsuper-

vised) clustering models. The objective is to predict the class label of xi ∈ X, which agrees with

the base classifiers’ predictions, and meanwhile, satisfies the constraints enforced by the clustering

models as much as possible. We refer to this problem as consensus maximization.

Ensemble methods have been studied in supervised learning [12, 137, 147] and unsupervised

learning [74] communities separately, and thus existing ensemble methods cannot be used to com-

bine multiple supervised and unsupervised models. Multi-view learning algorithms [37, 53, 151, 57]

require the access to raw data, and thus cannot handle the cases where only high-level concepts

or models are available. Semi-supervised learning [187] algorithms utilizes unlabeled information

together with labeled information to improve classification accuracy. However, they cannot be

applied to the cases with multiple information sources. In [63], we proposed a heuristic method to

combine heterogeneous information sources. In this chapter, we introduce the concept of consensus

maximization and solve the problem over a bipartite graph representation. The proposed consensus

maximization problem is a challenging problem. First of all, it cannot be solved by simple majority

voting because the correspondence between the cluster ID and the class label is unknown, and

the same cluster ID in different clustering models may represent different clusters. Secondly, to

achieve maximum agreement among various models, we must seek a global optimal prediction for

the target objects. With n objects and c classes, there are cn possible label assignments and thus

the search space is exponential.

To tackle this problem, we propose to summarize the base model outputs using a bipartite

graph in a lossless manner. To reach maximum consensus among all the models, we define an

optimization problem over the bipartite graph whose objective function penalizes the deviations

from the base classifiers’ predictions and the discrepancies of the predicted class labels among

nearby nodes. We solve the optimization problem using a coordinate descent method and derive
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Table 3.2: Important Notations
Symbol Definition
1, . . . , c class indexes

x1, . . . , xn objects
g1, . . . , gs groups from supervised models

gs+1, . . . , gv groups from unsupervised models
An×v = [aij ] aij-indicator of object i in group j
Un×c = [uiz] uiz = P (z|xi)-probability of object i wrt class z
Qv×c = [qjz] qjz = P (z|gj)-probability of group j wrt class z
Yv×c = [yjz] yjz-indicator of group j predicted as class z

a global optimal label assignment for the target objects, which is different from the result of

traditional majority voting and model combination approaches. The proposed method can be

applied to more complicated situations. For example, it can work in the scenario when each object

has a probabilistic label assignment, or each object has multiple labels to describe its category,

or some predictions are missing from each source. The method can further be adapted to handle

imbalanced class distributions and label feedback integration.

The rest of the chapter is organized as follows. In Section 3.2, we formally define the graph-based

consensus maximization problem and propose an iterative algorithm to solve it, which propagates

label information among neighboring nodes until stabilization. We prove the optimality of the

proposed solution in Section 3.3. We also present two different interpretations in Section 3.4. We

discuss how to incorporate feedback obtained from a few labeled target objects into the framework

and how to handle imbalanced class distributions in Section 3.5. An extensive experimental study

is carried out in Section 3.6, where the benefits of the proposed approach are illustrated on 20

Newsgroup, Cora research papers, DBLP bibliography and multi-domain sentiment data sets.

3.2 Methodology

Suppose we have the outputs of r classification models and (m − r) clustering models on a set of

objects X = {x1, . . . , xn}. Note that each xi can have multiple sources to describe it, and thus each

clustering model can be learnt from one of the sources without accessing the other data sources.

For the sake of simplicity, we assume that each object is assigned to only one class or cluster by each

of the m models, and the number of clusters in each clustering model is c, the same as the number
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of classes. Note that cluster ID z may not be related to class z. Each base model partitions X into

c groups, and there are a total of v = mc groups, where the first s = rc groups are generated by

classifiers and the remaining v−s groups are generated by clustering algorithms. Before proceeding

further, we introduce some notations that will be used in the following discussion: Bn×m denotes

an n×m matrix with bij representing the (ij)-th entry, and ~bi· and ~b·j denote vectors of row i and

column j, respectively. See Table 3.2 for a summary of important symbols.

Each model, supervised or unsupervised, partitions X into groups, and objects in the same

group share either the same predicted class label or the same cluster ID. We can represent the

objects and groups in a bipartite graph, where we have two types of nodes: the object nodes

x1, . . . , xn and the group nodes g1, . . . , gv. A group and an object are connected if the object is

assigned to the group by one of the models. A group obtained by a classification model links to the

node that corresponds to the groundtruth label. We simplify the aforementioned toy example to

include the first two classifiers and the first two clustering solutions only, and we show the groups

obtained from these four models in Figure 3.1. The group-object bipartite graph is shown in Figure

3.2.

The affinity matrix An×v of this graph summarizes the outputs of m models on X:

aij =





1 xi is assigned to group j by a model,

0 otherwise.

We try to assign each object into a class based on the consensus among base solutions. For object
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xi, we use indictor variable uiz to indicate its predicted label:

uiz =





1 the ensemble assigns xi to class z,

0 otherwise.

Then ~ui· is a row vector with only one non-zero entry, which is the class that the consensus method

assigns xi to. Putting all the predictions for the data set X together, we get an n × c matrix

U . Optimal integer solutions for an optimization problem are hard to obtain, and we want to

have confidence information associated with the final label prediction. Therefore, we replace the

constraint that uiz must be 0 or 1 by the weaker constraint that each variable belongs to the

interval [0,1]. Now uiz denotes the conditional probability of object xi belonging to class z. As a

nuisance parameter, the conditional probabilities at each group node gj are also estimated. These

conditional probabilities are summarized in two matrices: Un×c for object nodes and Qv×c for group

nodes. Each entry of the matrices, uiz and qjz, denotes the probability of object xi and group gj

belonging to class z respectively:

uiz = P̂ (δiz = 1|xi) and qjz = P̂ (δjz = 1|gj).

δiz or δjz is an indicator variable, which indicates xi or gj belongs to class z if its value is 1. Since

the first s = rc groups are obtained from classifiers, they have initial class label estimates denoted

by Yv×c where

yjz =





1 gj ’s predicted label is z, j = 1, . . . , s

0 otherwise.
(3.1)

Let kj =
∑c

z=1 yjz. We formulate the consensus agreement as the following optimization problem

on the graph:

P : min
Q,U

ϕ(Q,U) =
( n∑

i=1

v∑

j=1

aij ||~ui· − ~qj·||2 + α
v∑

j=1

kj ||~qj· − ~yj·||2
)

(3.2)

s.t. ~ui· ≥ ~0, |~ui·| = 1, i = 1 : n (3.3)

~qj· ≥ ~0, |~qj·| = 1, j = 1 : v (3.4)
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Algorithm 1 BGCM algorithm

Input: group-object affinity matrix A, initial labeling matrix Y ; parameters α and ε;
Output: consensus matrix U ;
Algorithm:

Initialize U (0),U (1) randomly without violating Eq. (3.3)
Set step number t ← 1
while ||U (t) − U (t−1)|| > ε do

t ← t + 1
Q(t) = (Dv + αKv)−1(AT U (t−1) + αKvY )
U (t) = D−1

n AQ(t)

end while
return U (t)

where ||.|| and |.| denote a vector’s L2 and L1 norm respectively. The first term ensures that if

an object xi is assigned to group gj by one of the models, their conditional probability estimates

for the category label must be close. When j = 1, . . . , s, the group node gj is from a classifier, so

kj = 1 and the second term imposes the constraint that group gj ’s consensus class label estimate

should not deviate much from its initial class label prediction. α is the shadow price payment for

violating the constraints. When j = s + 1, . . . , v, gj is a group from an unsupervised model with

no such constraints. Thus kj = 0 and the weight of the constraint is 0. Finally, ~ui· and ~qj· are

probability vectors, so each component must be greater than or equal to 0, and the sum of the

components must be 1. The corresponding integral formulation is shown in Eq. (3.16) in Section

3.4.

We propose to solve this problem using block coordinate descent methods as shown in Algorithm

1. At the t-th iteration, if we fix the value of U , the objective function is a summation of v quadratic

components with respect to ~qj·. It is strictly convex and ∇~qj·ϕ(Q,U (t−1)) = 0 gives the unique

global minimum of the cost function with respect to ~qj·:

~q
(t)
j· =

∑n
i=1 aij~u

(t−1)
i· + αkj~yj·∑n

i=1 aij + αkj
(3.5)

Similarly, fixing Q, the unique global minimum with respect to ~ui· is also obtained:

~u
(t)
i· =

∑v
j=1 aij~q

(t)
j·∑v

j=1 aij
(3.6)

The update equations in matrix form are given in Algorithm 1. Dv = diag
{
(
∑n

i=1 aij)
}

v×v
and
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Table 3.3: Iterations of Algorithm 1 on an Example

Q(2) U (2) Q(3)

(0.6,0.2,0.2) (0.4667,0.2667,0.2667) (0.66,0.18,0.16)
(0.1667,0.6667,0.1667) (0.1542,0.7167,0.1292)
(0.1667,0.1667,0.6667)

(0.4667,0.2667,0.2667)
(0.1236,0.1486,0.7278)

(0.6,0.2,0.2) (0.6583,0.1833,0.1583)
(0.2,0.6,0.2)

(0.3667,0.3667,0.2667)
(0.1767,0.6417,0.1817)

(0.1111,0.1111,0.7778) (0.0787,0.0787,0.8426)
(0.3333,0.3333,0.3333)

(0.2583,0.4833,0.2583)
(0.3014,0.3014,0.3972)

(0.3333,0.3333,0.3333) (0.4667,0.2667,0.2667)
(0.3333,0.3333,0.3333)

(0.2583,0.3533,0.3833)
(0.2917,0.4083,0.3)

(0.3333,0.3333,0.3333) (0.3299,0.3424,0.3278)
(0.3333,0.3333,0.3333)

(0.2361,0.2361,0.5278)
(0.3625,0.3125,0.325)

(0.3333,0.3333,0.3333) (0.3583,0.3833,0.2583) (0.3667,0.3667,0.2667)

Dn = diag
{
(
∑v

j=1 aij)
}

n×n
act as the normalization factors. Kv = diag

{
(
∑c

z=1 yjz)
}

v×v
indicates

the existence of constraints on the group nodes. During each iteration, the probability estimates

at each group node (i.e., Q) combine their initial values Y and the information from the node’s

neighboring object nodes, then each group node propagates the updated probability estimates back

to its neighboring object nodes when updating U . It is straightforward to prove that (Q(t), U (t))

converges to a stationary point of the optimization problem [16].

Example . Table 3.3 shows some intermediate results of the algorithm (with α = 2) for the

simple example shown in Figure 3.2. Suppose we set each probability vector in U (1) to repre-

sent uniform distributions over the classes: (0.3333,0.3333,0.3333). During the first iteration,

if a group is obtained from a clustering model, its probabilities are calculated as the average

probabilities of the objects that it links to, and thus remains (0.3333,0.3333,0.3333). On the

other hand, if a group is from a classifier, we incorporate the prior label information (with a

weight α) into the calculation. For example, group g1 corresponds to the first class and con-

tains objects x1, x2 and x3, and thus its probability vector ~q
(2)
1· is the weighted average of ~u

(1)
1· ,

~u
(1)
2· , ~u

(1)
3· and α · (1, 0, 0), which leads to (0.6,0.2,0.2). Similarly, the probabilities of each record

(U (2)) are calculated as the average probabilities of the groups that it links to. For example, the

first object x1 is adjacent to g1, g4, g8 and g10, and thus ~u
(2)
1· = ((0.6, 0.2, 0.2) + (0.6, 0.2, 0.2)+

(0.3333, 0.3333, 0.3333) + (0.3333, 0.3333, 0.3333))/4 = (0.4667, 0.2667, 0.2667). Such propagation

continues until convergence.
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3.3 Performance Analysis

In this section, we show that Algorithm 1 gives the optimal solution to the proposed problem with

linear convergence rate and also analyze its time complexity.

Convexity of the Problem. We first prove that the optimization problem P defined in Eq.

(3.2) is a convex program by the following theorem.

Theorem 1. P is a convex program.

Proof. Since the constraints of P are all linear, we only need to show the objective function of P,

denoted by ϕ(Q, U), is convex. It can be derived that:

ϕ(Q,U) =
n∑

i=1

v∑

j=1

aij ||~ui· − ~qj·||2 + α
v∑

j=1

kj ||~qj· − ~yj·||2

=
n∑

i=1

v∑

j=1

c∑

z=1

aij(uiz − qjz)2 +
v∑

j=1

c∑

z=1

αkj(qjz − yjz)2

=
n∑

i=1

v∑

j=1

c∑

z=1

aij(uiz − qjz)2 +
v∑

j=1

c∑

z=1

αkjq
2
jz +

v∑

j=1

c∑

z=1

αkj(y2
jz − 2yjzqjz)

(3.7)

Suppose θ is a vector containing all the variables of ϕ(Q,U), i.e., θ = (q11, ..., qnc, u11, ..., uvc).

Consider ϕ(Q,U)’s standard quadratic form:

ϕ(Q,U) = ϕ(θ) = θT Wθ + bT θ + c (3.8)

where W , b and c are the coefficient matrix, vector, and scalar of ϕ(θ) respectively. From Eq. (3.7),

we have

θT Wθ =
n∑

i=1

v∑

j=1

c∑

z=1

aij(uiz − qjz)2 +
v∑

j=1

c∑

z=1

αkjq
2
jz (3.9)

Note that aij and αkj are non-negative for any i and j. Furthermore, we assume that each object

receives predictions from at least one model, and thus there exists at least one non-zero entry in

each vector. It is obvious that θT Wθ > 0 if θ 6= 0. Therefore, the matrix W is strictly positive

definite, and thus ϕ(Q,U) is strictly convex. P is a convex program.

For a convex problem, any local minimum is also a global minimum [16]. Therefore, the solution

found by Algorithm 1 converges to the global minimum.
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Constraints. Note that we do not take into account the constraints (Eq. (3.3) and Eq. (3.4))

when solving P. In fact, the constraints will be satisfied when we make proper initialization.

Theorem 2. The solution obtained by Algorithm 1 automatically satisfies the constraints Eq.

(3.3) and Eq. (3.4).

Proof. Suppose that the initial value ~u
(1)
i· satisfies the constraints in Eq. (3.3), namely, ~u

(1)
i· ≥ ~0

and |~u (1)
i· | = 1, i = 1, 2, ..., n. It is obvious that the initial probability vector ~yi· also satisfies

the constraints as indicated in its definition (Eq. (3.1)). Now we prove the theorem by induction.

Suppose at step t− 1, the constraints are satisfied. From Eq. (3.5), we can derive that

|~q (t)
j· | =

c∑

z=1

q
(t)
jz =

∑c
z=1

∑n
i=1 aiju

(t−1)
iz +

∑c
z=1 αkjyjz∑n

i=1 aij + αkj

=
∑n

i=1 aij |~u (t−1)
i· |+ αkj |~yi·|∑n

i=1 aij + αkj
=

∑n
i=1 aij + αkj∑n
i=1 aij + αkj

= 1.

In addition, it is clear that ~q
(t)
j· ≥ ~0. Thus, Eq. (3.4) is satisfied at the t-th iteration. Similarly, we

can show that

|~u (t)
i· | =

c∑

z=1

u
(t)
iz =

∑c
z=1

∑v
j=1 aijq

(t)
jz∑v

j=1 aij
=

∑v
j=1 aij |~q (t)

j· |∑v
j=1 aij

=

∑v
j=1 aij∑v
j=1 aij

= 1.

Again, ~u
(t)
i· ≥ ~0, and thus Eq. (3.3) is satisfied at the t-th iteration as well.

Theorem 2 guarantees that the solution satisfies the constraints of P if the initial U (1) satisfies

the constraints. Therefore, the solution given by Algorithm 1 is feasible, and we have proved its

optimality in Theorem 1.

Time Complexity. It can be seen that at each iteration, the algorithm takes O(nvc) time

to compute the probability vectors of groups and objects where n is the number of objects, v is

the number of groups and c is the number of classes. The convergence rate of coordinate descent

methods is usually linear. For the task of classification, an approximate solution to the optimization

problem may suffice. In the experiments reported in Section 3.6, we fix the number of iterations

to 40 and get good results. Suppose there are m models and each of the clustering models outputs

c clusters. Then v = mc and thus the time complexity of the method is O(nmc2). As can be seen,
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the running time is linear with respect to the number of objects and the number of base models,

but it is quadratic in the number of classes. For problems with a small number of classes, the

proposed method can scale well to large data sets. Scalability experiments shown in Section 3.6

support this claim.

Discussion. We assume that most of the base models are relevant to the classification task, and

these models provide complementary expertise, so their consensus represents the best solution. This

implicitly assumes that clusters in each clustering solution are correlated with classes. Therefore,

although the framework can be applied to the cases with different number of clusters and classes

in different solutions, it is reasonable to set the number of clusters equal to the number of classes

in usual practice since it approximates such a correlation relationship assumption. If a few models

are irrelevant, the results of model combination will not be hurt much. However, we must ensure

that most of the models help the classification task. This can be achieved by selecting appropriate

data sources by domain experts and choosing the right features for classification or clustering. For

example, clustering of product reviews may not be a good model for user sentiment analysis because

the clusters are more likely to be formed by product features instead of sentiments. In this case,

the model should be learnt using sentiment words only (such as adjectives). Even if we include

such a product-oriented clustering model in the consensus combination, the proposed method can

compute a low weight for the model if the other classification or clustering models are obtained

based on sentiment-oriented features. Then the decisions made by the product-oriented model will

not be counted a lot in the final solution.

Another important issue is how the proposed method is related to traditional supervised and

unsupervised learning ensemble methods when there are only supervised models (no clustering

solutions) or vice versa. Traditional supervised ensemble methods such as bagging and boosting,

combine multiple models trained from multiple samples of one training set, and thus they have a

different setting from the proposed multiple source knowledge integration. The proposed method

is also different from simple majority voting because it actually gives a weighted combination

of models. The weights are implicitly computed to simulate model importance such that the

models that are more likely to be consistent with the others receive higher weights (encoded in

the group node probability vectors). On the other hand, the proposed method seeks an answer to
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a classification task instead of a clustering partition, so it is different from traditional clustering

ensemble techniques. The proposed method requires some label information to guide the label

propagation procedure and compute the probability vectors. Therefore, at least one classification

model is needed in the collection of base models.

In the proposed bipartite graph, each class/cluster produced by a base model is simply repre-

sented as a group node, so it is general enough to cover several more complicated scenarios. For

example, when each base model gives a probabilistic label assignment for each object, we can set

the weight of the edge between an object and each of its possible groups as the probability of this

object belonging to the group. Similarly, the object that has multiple labels to describe its category

can link to more than one group in one base solution. We can allow some missing values in the

matrix holding all the outputs of the base models, which correspond to the missing edges in the

graph. A few missing edges do not affect the consensus maximization procedure.

3.4 Interpretations

In this part, we explain the proposed method from two independent perspectives.

Constrained Embedding. Now we go back to the integral consensus solution, i.e., each

object is assigned to exactly one class. So U and Q are indicator matrices. uiz (or qjz) = 1 if the

ensemble assigns xi (or gj) to class z, and 0 otherwise. For group nodes from supervised models,

they have been assigned a class label by one of the classifiers, that is, qjz = yjz for 1 ≤ j ≤ s.

Because U and Q represent the consensus, we should let group gj correspond to class z if most of

the objects in group gj correspond to class z in the consensus solution. The optimization is thus:

min
Q,U

v∑

j=1

c∑

z=1

∣∣∣∣qjz −
∑n

i=1 aijuiz∑n
i=1 aij

∣∣∣∣ (3.10)

s.t.
c∑

z=1

uiz = 1 ∀i ∈ {1, . . . , n} (3.11)

c∑

z=1

qjz = 1 ∀j ∈ {s + 1, . . . , v} (3.12)

uiz ∈ {0, 1} qjz ∈ {0, 1} (3.13)
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qjz = 1 ∀j ∈ {1, . . . , s} if gj ’s label is z (3.14)

qjz = 0 ∀j ∈ {1, . . . , s} if gj ’s label is not z (3.15)

Here, the two indicator matrices U and Q can be viewed as embedding x1, . . . , xn (object nodes)

and g1, . . . , gv (group nodes) into a c-dimensional cube. Due to the constraints in Eq. (3.13), ~ui·

and ~qj· reside on the boundary of the (c − 1)-dimensional hyperplane in the cube. ~a·j denotes

the objects that group gj contains. ~qj· can be regarded as the group representative in this new

space, and thus it should be close to the group mean:
∑n

i=1 aij~ui·∑n
i=1 aij

. For the s groups obtained from

supervised models, we know their “ideal” embedding, as represented in the constraints in Eq. (3.14)

and Eq. (3.15). Note that this formulation is not a clustering procedure. If we regard ~qj· as the

j-th cluster center, and ~ui· as the i-th object, we can see that k-means clustering tries to compute

the cluster assignment aij and the cluster center ~qj·. However, in our formulation, aij is fixed,

instead, ~ui· is the unknown variable, and thus this formulation simulates an embedding instead of

a clustering.

We now relate this problem to the optimization framework discussed in Section 3.2. aij can only

be 0 or 1, and thus Eq. (3.10) just depends on the cases when aij = 1. When aij = 1, regardless of

whether qjz is 1 or 0, we have |qjz
∑n

i=1 aij −
∑n

i=1 aijuiz| =
∑n

i=1 |aij(qjz − uiz)|. Therefore,

∑

j:aij=1

c∑

z=1

∣∣∣∣qjz −
∑n

i=1 aijuiz∑n
i=1 aij

∣∣∣∣ =
∑

j:aij=1

c∑

z=1

|qjz
∑n

i=1 aij −
∑n

i=1 aijuiz|∑n
i=1 aij

=
∑

j:aij=1

c∑

z=1

∑n
i=1 |aij(qjz − uiz)|∑n

i=1 aij
.

Suppose the groups found by the base models have balanced size, i.e.,
∑n

i=1 aij = γ where γ is a

constant for ∀j. Then we can drop γ from the denominator of the objective function:

∑

j:aij=1

c∑

z=1

n∑

i=1

|aij(qjz − uiz)| =
n∑

i=1

∑

j:aij=1

aij

c∑

z=1

|qjz − uiz| =
n∑

i=1

v∑

j=1

aij

c∑

z=1

|qjz − uiz| .

Therefore, when the classification and clustering models generate balanced groups, the constrained
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embedding problem in Eq. (3.10) is equivalent to:

min Q,U

n∑

i=1

v∑

j=1

aij

c∑

z=1

|qjz − uiz| (3.16)

with the same set of constraints from Eq. (3.11) to Eq. (3.15). It is obvious that this is the same as

the optimization problem we propose in Section 3.2 with two relaxations: 1) We transform the hard

constraints in Eq. (3.15) to soft constraints where the ideal embedding is expressed in the initial

labeling matrix Y and the price for violating the constraints is set to α. 2) uiz and qjz are relaxed

to have values between 0 and 1, instead of either 0 or 1, and quadratic cost functions replace the

L1 norms. They are probability estimates rather than class membership indicators, and we can

embed them anywhere on the plane.

With these relaxations, we build connections between the constrained embedding framework as

discussed in this section and the one proposed in Section 3.2. Therefore, we can view our proposed

method as embedding both object nodes and group nodes into a hyperlane so that object nodes

are close to the group nodes that they link to. The constraints are put on the group nodes from

supervised models to penalize the embeddings that are far from the “ideal” ones.

Ranking on Consensus Structure. Our method can also be viewed as conducting ranking

with respect to each class on the bipartite graph, where group nodes from supervised models act

as queries. Suppose we wish to know the probability of group gj belonging to class 1, which

can be regarded as the relevance score of gj with respect to example queries from class 1. Let

wj =
∑n

i=1 aij . In Algorithm 1, the relevance scores of all the groups are learnt using the following

equation:

~q·1 = (Dv + αKv)−1(AT D−1
n A~q·1 + αKv~y·1) = Dλ(D−1

v AT D−1
n A)~q·1 + D1−λ~y·1

where the v × v diagonal matrices Dλ and D1−λ’s (j, j) entries are wj

wj+αkj
and αkj

wj+αkj
.

Consider collapsing the original bipartite graph into a graph with group nodes only. Then

AT A is its affinity matrix. After normalizing it to be a probability matrix, we have pij in P =

D−1
v AT D−1

n A, which represents the probability of jumping to node j from node i. The groups that

are predicted to be in class 1 by one of the supervised models have 1 at the corresponding entries
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in ~y·1. Therefore these group nodes are “queries”, and we wish to rank the group nodes according

to their relevance to these queries.

Our ranking model is related to PageRank model [135] in the following aspects: 1) In PageRank,

a uniform vector with entries all equal to 1 replaces ~y·1. In our model, we use ~y·1 to show our

preference towards the query nodes, so the resulting scores are biased to reflect the relevance

regarding class 1. 2) In PageRank, the weights Dλ and D1−λ are fixed constants λ and 1 − λ,

whereas in our model Dλ and D1−λ give personalized damping factors. Each group has a damping

factor λj = wj

wj+αkj
. 3) In PageRank, the value of link-votes are normalized by the number of

outlinks at each node, whereas our ranking model does not normalize pij on its outlinks, and thus

it can be viewed as an un-normalized version of personalized PageRank [84, 184]. When each base

model generates balanced groups, both λj and outlinks at each node become constants, and the

proposed method simulates the standard personalized PageRank.

The relevance scores with respect to class 1 for group and object nodes will converge to

~q·1 = (Iv −DλD−1
v AT D−1

n A)−1D1−λ~y·1 ~u·1 = (In −D−1
n ADλD−1

v AT )−1D−1
n AD1−λ~y·1

respectively. Iv and In are identity matrices with size v× v and n× n. The above arguments hold

for the other classes as well, and thus each column in U and Q represents the ranking of the nodes

with respect to each class. Because each row sums up to 1, each entry in the row is the conditional

probability estimate of the node belonging to one of the classes.

3.5 Extensions

In this section, we propose two modified versions of Algorithm 1 to handle a small amount of

labeled objects and imbalanced class distributions.

Incorporating Label Information. Thus far, we propose to combine the outputs of super-

vised and unsupervised models by consensus. When the true labels of the objects are unknown,

this is a reliable approach. However, incorporating labels from even a small portion of the objects

may greatly refine the final hypothesis. We assume that labels of the first l objects are known,
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which is encoded in an n× c matrix F :

fiz =





1 xi’s observed label is z, i = 1, . . . , l,

0 otherwise.

We modify the objective function in Eq. (3.2) to penalize the deviation of ~ui· from the observed

label if the i-th object is labeled:

ϕ(Q,U) =
n∑

i=1

v∑

j=1

aij ||~ui· − ~qj·||2 + α
v∑

j=1

kj ||~qj· − ~yj·||2 + β
n∑

i=1

hi||~ui· − ~fi·||2 (3.17)

where hi =
∑c

z=1 fiz. When i = 1, . . . , l, hi = 1, we enforce the constraint that object xi’s

consensus class label estimate should be close to its observed label with a shadow price β. When

i = l + 1, . . . , n, xi is unlabeled. Therefore, hi = 0 and the constraint term is eliminated from

the objective function. To update the conditional probability for the labeled objects, we now

incorporate their prior label information:

~u
(t)
i· =

∑v
j=1 aij~q

(t)
j· + βhi

~fi·∑v
j=1 aij + βhi

(3.18)

In matrix form, this can be written as

U (t) = (Dn + βHn)−1(AQ(t) + βHnF ) (3.19)

with Hn = diag
{
(
∑c

z=1 fiz)
}

n×n
. Therefore, in the semi-supervised setting, we replace the com-

putation of U (t) in Algorithm 1 by Eq. (3.19). Note that the initial conditional probability of a

labeled object is 1 at its observed class label, and 0 at all the others. However, this optimistic

estimate will be changed during the updates, with the rationale that the observed labels are just

random samples of the true label distribution. Thus we only use the observed labels to bias the

updating procedure, instead of totally relying on them.

Example . In Table 3.4, we compare the intermediate results obtained from the unsupervised

and semi-supervised versions of the algorithm for the example in Figure 3.2. In the semi-supervised

version of the algorithm, we start with uniform probability distributions, and the probability vectors
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Table 3.4: Unsupervised vs. Semi-Supervised Algorithms on U (2)

Object Label Unsupervised Semi-Supervised
x1 1 (0.4667,0.2667,0.2667) (0.8222,0.0889,0.0889)
x2 (0.4667,0.2667,0.2667) (0.4667,0.2667,0.2667)
x3 (0.3667,0.3667,0.2667) (0.3667,0.3667,0.2667)
x4 2 (0.2583,0.4833,0.2583) (0.0861,0.8278,0.0861)
x5 (0.2583,0.3533,0.3833) (0.2583,0.3533,0.3833)
x6 3 (0.2361,0.2361,0.5278) (0.0787,0.0787,0.8426)
x7 (0.3583,0.3833,0.2583) (0.3583,0.3833,0.2583)

of groups (Q(2)) are computed in the same way as in the unsupervised version. Therefore, we

only show the comparison on U (2) (with α = 2 and β = 8). Suppose we know the class labels

of objects x1 (class 1), x4 (class 2) and x6 (class 3), and all the other objects are unlabeled.

When calculating the probability vectors of the labeled objects, we now incorporate the label

information. For example, the first object x1 is labeled as class 1, and it belongs to groups g1, g4,

g8 and g10. Therefore, ~u
(2)
1· = (8 · (1, 0, 0) + (0.6, 0.2, 0.2) + (0.6, 0.2, 0.2) (0.3333, 0.3333, 0.3333) +

(0.3333, 0.3333, 0.3333))/(8+1+1+1+1) = (0.8222, 0.0889, 0.0889). The probability vector (1, 0,

0) is obtained from the label of object x1. We average the probability vectors of the groups that x1

is connected to (with weight 1) as well as that of its label (with weight β = 8). As can be seen, the

probability vectors of the labeled objects (x1, x4, x6) are biased towards their labeled classes in the

semi-supervised version, and such label information will be propagated to groups and unlabeled

objects during later iterations.

Handling Imbalanced Cases. Usually, Algorithm 1 can make accurate predictions on objects

with balanced class distributions. However, when the class distribution is imbalanced, there could

be some problems. Considering the computation of ~q j· in Eq. (3.5), the probability of the j-th

group will be biased towards the majority class. The reason is that we take equal votes from all the

objects, and the overwhelming number of objects from the majority class lead to imbalanced votes.

In turn, the probability vector of each object ~u i· will be biased towards the majority class when

we average the votes from ~q j·. Finally, all the objects will be labeled using the majority class.

To solve this problem, we can simply change the matrix A used in the computation of U from
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Table 3.5: Un-normalized vs. Normalized Algorithms on U (2)

Object Un-normalized Normalized
x1 (0.4667,0.2667,0.2667) (0.4588,0.2706,0.2706)
x2 (0.4667,0.2667,0.2667) (0.4400,0.2800,0.2800)
x3 (0.3667,0.3667,0.2667) (0.3538,0.3538,0.2923)
x4 (0.2583,0.4833,0.2583) (0.2431,0.5137,0.2431)
x5 (0.2583,0.3533,0.3833) (0.2567,0.3367,0.4067)
x6 (0.2361,0.2361,0.5278) (0.1975,0.1975,0.6049)
x7 (0.3583,0.3833,0.2583) (0.3373,0.4196,0.2431)

the adjacency matrix of the bipartite graph to a normalized matrix B of the same size:

bij =
aij∑n
i=1 aij

∀i = 1, . . . , n ∀j = 1, . . . , v

In unsupervised scenarios, the probability of the i-th object being assigned to class z is thus

computed as:

~u
(t)
i· =

∑v
j=1 bij~q

(t)
j·∑v

j=1 bij
.

In other words, we change U (t) = D−1
n AQ(t) to U (t) = D−1

n BQ(t) in Algorithm 1 where Dn is

redefined as diag
{
(
∑v

j=1 bij)
}

n×n
.

Now, when calculating U , we normalize the vote from the j-th group by this group’s number of

out-links in the bipartite graph. In the example shown in Figure 3.2, to calculate ~u3· (the conditional

probability of object x3), we average ~q1·, ~q5·, ~q7· and ~q12· with weights 1
3 , 1

3 , 1
2 and 1 respectively.

Note that in the un-normalized version, the weights associated with ~qj· in the averaging are all 1.

Normally, if the j-th group corresponds to a majority class, the number of its out-links is large

because it connects to many objects, and thus its weight in the computation of ~ui· is low. On the

other hand, if the j-th group represents a minority class, its weight is high. Therefore, by taking

weighted average of the groups’ probability vectors, we force the conditional probability of each

object to move toward the minority class side. During the iterations, the probability vectors of

groups will be influenced as well. In this way, the objects that belong to the minority class will be

classified correctly.

Example . In Table 3.5, we compare the results obtained from the un-normalized and normal-
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Table 3.6: Data Sets Description
Data ID Category Labels #target #labeled

1 comp.graphics comp.os.ms-windows.misc sci.crypt sci.electronics 1408 160
2 rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey 1428 160

Newsgroup 3 sci.cypt sci.electronics sci.med sci.space 1413 160
4 misc.forsale rec.autos rec.motorcycles talk.politics.misc 1324 160
5 rec.sport.baseball rec.sport.hockey sci.crypt sci.electronics 1424 160
6 alt.atheism rec.sport.baseball rec.sport.hockey soc.religion.christian 1352 160
1 Operating Systems Programming Data Structures Algorithms and Theory 603 60
2 Databases Hardware and Architecture Networking Human Computer Interaction 897 80

Cora
3 Distributed Memory Management Agents Vision and Pattern Recognition 1368 100

Graphics and Virtual Reality Object Oriented Planning Robotics
4

Compiler Design Software Development
875 100

DBLP 1 Databases Data Mining Machine Learning Information Retrieval 3836 400

ized versions of the algorithm for the simple example shown in Figure 3.2. In the normalized version

of the algorithm, we normalize the votes from the nodes by their out-degrees so that the minority

ones will be weighted higher during the computation. In this example, since all the objects are

linked to exactly four groups, they should be equally weighted. Therefore, the calculation of proba-

bility vectors for the groups (Q(2)) is the same in both normalized and un-normalized versions. On

the other hand, the out-degrees of group nodes are different. For example, object x6 is linked to

four groups: g3, g6, g7, and g10, whose out-degrees are 2, 1, 2 and 4 respectively. Therefore, when

calculating the probability vector of x6, the weights of the four groups are 1/2, 1, 1/2 and 1/4 re-

spectively: ~u
(2)
6· = ((0.1667, 0.1667, 0.6667)/2+(0.1111, 0.1111, 0.7778)+(0.3333, 0.3333, 0.3333)/2+

(0.3333, 0.3333, 0.3333)/4)/(1/2 + 1 + 1/2 + 1/4) = (0.1975, 0.1975, 0.6049). As can be seen, the

minority group (g6) has a higher weight in the voting, and thus the probability distribution of

object x6 is biased towards the class g6 represents. Through the propagation, the probability of an

object (a group) belonging to a minority class is thus increased.

3.6 Experiments

We evaluate the proposed algorithms on fifteen classification tasks from four applications. In

each task, we have a target set on which we wish to predict class labels. Clustering algorithms

are employed on different views of this target set to obtain the grouping results. To construct the

classifiers, we apply supervised learning either to data from the same domain or to data from related

domains. These classification models are applied to the target set as well. The proposed algorithm

generates a consolidated classification solution for the target set based on both classification and
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clustering results.

3.6.1 Datasets

The details of the tasks are summarized in Table 3.6.

20 Newsgroup categorization. We construct six learning tasks, each of which involves four

classes. The objective is to classify newsgroup messages according to topics. We used the version1

where the newsgroup messages are sorted by date, and separated into training and test sets. The

test sets are our target sets. We learn logistic regression [72] and SVM models [32] from the training

sets (supervised models M1 and M2), and apply these models to the target sets. Meanwhile, we

cluster the target sets using K-means and min-cut clustering algorithms (unsupervised models M3

and M4) [98].

Cora research paper classification. We aim at classifying a set of research papers into their

areas [130]. We extract four target sets, each of which includes papers from three, four or five areas

(details can be found in Table 3.6). The training sets contain research papers that are different

from those in the target sets. Both training and target sets have two views: the paper abstracts

and the paper citations. We apply logistic regression classifiers and K-means clustering algorithms

on the two views of the target sets. Therefore, supervised models M1 and M2 represent SVM

classifiers on abstracts and citations respectively, and the unsupervised model M3 or M4 indicates

clustering of abstracts or citations.

DBLP data. We retrieve 4,236 authors from DBLP network2 and try to predict their research

areas. The training sets are drawn from a different domain, i.e., the conferences in each research

field. There are also two views for both training and target sets: the publication network and the

textual content of the publications. The number of papers an author published in the conference

can be regarded as a link feature, whereas the pool of titles that an author published is the text

feature. Logistic regression and K-means clustering algorithms are used to derive the predictions

on the target set. Similar to Cora dataset, supervised models M1 and M2 are classification results

based on the two views, whereas M3 and M4 are unsupervised clustering models on the two views.

We manually label the target set for evaluation.
1http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://www.informatik.uni-trier.de/∼ley/db/
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Sentiment data. We use the Multi-Domain Sentiment Dataset3, which contains product

reviews taken from Amazon.com for many product types (domains). We select four domains:

books, DVDs, electronics, and housewares as four target sets. To predict categories (positive

or negative) of reviews, we train SVM classifiers [32] using the other three domains and obtain

three supervised models (M1,M2,M3). We then use three different clustering algorithms (K-

means, min-cut, and hierarchical clustering) on the target set and get three unsupervised models

(M4,M5,M6). We combine all the models by the consensus maximization method to predict the

sentiment orientation of each review in the target set.

3.6.2 Baseline Methods and Evaluation

We denote the proposed method as Bipartite Graph-based Consensus Maximization (BGCM),

which combines the outputs of the base models. Only clustering ensembles, majority voting meth-

ods, and the proposed BGCM algorithm work at the meta output level. In these methods, raw data

are discarded, and only prediction results from multiple models are available. However, majority

voting cannot be applied when there are clustering models, because the correspondence between

clusters and classes is unknown. Therefore, we compare BGCM with two clustering ensemble

approaches (MCLA [155] and HBGF [54]), which ignore the label information from supervised

models, regard all the base models as unsupervised clustering, and integrate the outputs of the

base models. We combine all the classification models by majority voting to obtain reference la-

bels. With the help of the hungarian method [24], we map the output clusters generated by the

clustering ensemble approaches to the reference labels obtained from classification models.

For the clustering algorithms used in the base models, we map their outputs to the best possible

class predictions using the groundtruth class labels. Since the true labels are used to do the

mapping, it should be able to generate the best accuracy from these unsupervised models. As

discussed in Section 3.5, we can incorporate a few labeled objects, which are drawn from the

domain of the target set, into the framework and improve accuracy. This improved version of the

BGCM algorithm is denoted as BGCM-L, and the number of labeled objects used in each task is

shown in Table 3.6. On each task, we repeat the experiments 50 times, each of which has randomly
3http://www.cs.jhu.edu/∼mdredze/datasets/sentiment/
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Table 3.7: Classification Accuracy Comparison on 20 Newsgroup Dataset
20 Newsgroups

Methods
1 2 3 4 5 6

M1 0.7957 0.8836 0.8539 0.8835 0.8751 0.8887
M2 0.7724 0.8601 0.8127 0.8683 0.8346 0.8571
M3 0.8044 0.8795 0.8649 0.8975 0.8723 0.9042
M4 0.7756 0.8563 0.8142 0.8452 0.8602 0.8580

MCLA 0.7602 0.8135 0.8347 0.8655 0.8287 0.8276
HBGF 0.8107 0.9198 0.8585 0.9074 0.8680 0.9005
BGCM 0.8126 0.9058 0.8602 0.9120 0.8855 0.9065

2-L 0.7992 0.9138 0.8507 0.8745 0.8901 0.8921
3-L 0.8157 0.9203 0.8801 0.9087 0.8909 0.9198

BGCM-L 0.8308 0.9209 0.8848 0.9236 0.8998 0.9246
STD 0.0041 0.0033 0.0034 0.0027 0.0041 0.0030

Table 3.8: Classification Accuracy Comparison on Cora and DBLP Datasets
Cora DBLP

Methods
1 2 3 4 1

M1 0.7746 0.8859 0.8735 0.8934 0.9342
M2 0.7776 0.8586 0.8547 0.8953 0.8762
M3 0.7951 0.8834 0.8769 0.8912 0.9384
M4 0.7600 0.8584 0.7832 0.9113 0.7946

MCLA 0.8602 0.8474 0.8824 0.8551 0.8873
HBGF 0.7797 0.9102 0.8513 0.8802 0.9243
BGCM 0.8680 0.9152 0.8945 0.9146 0.9435

2-L 0.8135 0.8765 0.8865 0.9012 0.9017
3-L 0.8647 0.9090 0.9232 0.9158 0.9310

BGCM-L 0.8928 0.9170 0.9313 0.9279 0.9464
STD 0.0048 0.0039 0.0062 0.0047 0.0029

chosen target and labeled objects, and report the average accuracy. We also show the standard

deviation (STD) for BGCM-L method. The baselines share very similar standard deviation with

the reported one on each task.

3.6.3 Experimental Results

Accuracy. First, we summarized the classification accuracy of all the baselines and the proposed

approaches on the target sets of the first eleven tasks in Tables 3.7 and 3.8. The two single classifiers

(M1 and M2), and the two single clustering models (M3 and M4) usually have low accuracy. By

combining all the base models, the clustering ensemble approaches (MCLA and HBGF) can improve

the performance over each single model. The proposed BGCM method always outperforms the base

models, and achieves better or comparable performance compared with the baseline ensembles.

By incorporating a small portion (around 10%) of labeled objects, the BGCM-L method further

improves the performance. The consistent increase in accuracy can be observed in all the tasks,
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Table 3.9: Experimental Results on Sentiment Dataset
Method Books DVDs Electronics Housewares

M1 0.7245 0.7555 0.7205 0.7395
M2 0.6715 0.6790 0.7055 0.7285
M3 0.6820 0.6915 0.7925 0.8055
M4 0.5460 0.5070 0.5650 0.5020
M5 0.5890 0.5175 0.7335 0.7095
M6 0.5735 0.5160 0.7255 0.7170

MCLA 0.6980 0.7068 0.7664 0.7482
HBGF 0.6601 0.6976 0.8078 0.7694
BGCM 0.7625 0.7770 0.8170 0.8130

where the margin between the accuracy of the best single model and that of the BGCM-L method is

from 2% to 10%. Even when taking variance into consideration, the results demonstrate the power

of consensus maximization in accuracy improvements. Similar patterns can be found from the

results on the sentiment dataset in Table 3.9. Although the unsupervised models are less accurate

than the supervised models in this case, incorporating them can still benefit the classification task

as these models help improve the diversity of the base models.

Sensitivity. As shown in Figures 3.3 (a) and (b), the proposed BGCM-L method is not

sensitive to the parameters α and β. To make the plots clear, we just show the performance on the

first task of the first three applications. α and β are the shadow prices paid for deviating from the

estimated labels of groups and observed labels of objects, so they should be greater than 0. α and

β represent the confidence of our belief in the labels of the groups and objects compared with 1.

The labels of group nodes are obtained from supervised models and may not be correct. Therefore,

a smaller α usually achieves better performance. On the other hand, the labels of objects can be

regarded as groundtruth, and thus a larger β is better. In experiments, we find that when α is

below 4, and β greater than 4, good performance is achieved. We let α = 2 and β = 8 to produce

the experimental results shown in Tables 3.7, 3.8 and 3.9. To see how the performance varies

with the amount of labeled data, we fix the target set at 80% of all the objects, and and vary the

percentage of labeled objects from 1% to 20%. The results are summarized in Figure 3.3 (c). In

general, more labeled objects help the classification task, and the improvements are more visible

on Cora data set. When the percentage reaches 10%, BGCM-L’s performance becomes stable.

Number of Models. We vary the number of base models incorporated into the consensus
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Figure 3.3: Sensitivity Analysis

framework. The BGCM-L method on two models is denoted as 2-L, where we average the per-

formance of the combined model obtained by randomly choosing one classifier and one clustering

algorithm. Similarly, the BGCM-L method on three models is denoted as 3-L. From Tables 3.7

and 3.8, we can see that BGCM-L method using all the four models outperforms the method in-

corporating only two or three models. When the base models are independent and each of them

obtains reasonable accuracy, combining more models should benefit more because the chance of

reducing independent errors increases.

We also ran some simulated experiments on synthetic data with up to 70 models. Suppose we

know the true labels of 1000 objects. There are four classes, and each class contains 250 objects.

We first discuss how to simulate supervised models. Suppose there are K supervised models, and

for each model, we flip some objects’ labels from their groundtruth to simulate the outputs for the

following two scenarios.

1) The outputs among different models are generated independently, i.e., the models are uncor-

related. To generate the output of a supervised model, we randomly choose r% of the objects as

the objects on which the model makes mistakes. For each of these objects, the model will predict

its label to be a randomly-chosen incorrect class.

2) In the second scenario, we want to simulate correlations among the base models. Suppose

we have already generated some models. To generate a new model M , we first generate its output

independently as described above. Then, we randomly choose an existing model M ′, and randomly

choose 30% objects and force M to make the same predictions on these objects as M ′.

We repeat either of the above procedures to generate the outputs of all the K models. Mean-

while, we assume that there are K unsupervised models as well. For unsupervised models, we first
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Figure 3.4: Performance Variations w.r.t #Models

generate the label outputs in the same way as described in the supervised model generation. Then

we discard the label and randomly assign a cluster ID to each class.

We vary the number of models K from 2 to 70 and for each K, we repeat the above procedure

20 times and average the performance of the proposed method on the 20 data sets. As shown in

Figure 3.4, the accuracy of the ensemble obtained by consensus maximization keeps increasing as

we incorporate more base models. r is the error rate of the base models. It is obvious that when

the base models have higher error rates, a larger number of models are needed to achieve 100%

accuracy for the consensus combination. For example, if the base models are independent, and

each of which has 20% error rate, we need no more than 10 models in the consensus maximization

to reach 100% accuracy. On the other hand, if the error rate of the base models is 60%, we have

to combine a lot more models to achieve higher accuracy. By comparing Figures 3.4(a) and 3.4(b),

we observe that the accuracy of consensus maximization converges slower when the base models

are correlated. For example, when the base models are correlated, and each of them has 20% error

rate, we now need to combine around 20 supervised and 20 unsupervised models to achieve an

ensemble accuracy of 100%. Therefore, this example provides some guidelines for selecting base

models. In general, incorporating more models into consensus maximization will help improve the

accuracy, and the more diversified and independent the base models are, the better the combined

model performs.

Number of Supervised vs. Unsupervised Models. We also evaluate how the consensus

maximization method performs when the ratio between the number of supervised and unsuper-
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Table 3.10: Performance Variations w.r.t the Number of Supervised and Unsupervised Models
Base Error = 40% Base Error = 20%

r
S U C S U C

1 0.5950 0.6230 0.6333 0.7724 0.8338 0.8463
2 0.5948 0.6119 0.6687 0.7946 0.8298 0.8892
3 0.6518 0.5708 0.6897 0.8418 0.8188 0.8750
4 0.6819 0.5542 0.7260 0.8773 0.8079 0.9153
5 0.7227 0.5622 0.7452 0.8975 0.7956 0.9203
6 0.7308 0.5584 0.7530 0.9224 0.7878 0.9433
7 0.7514 0.5203 0.7652 0.9369 0.7636 0.9430
8 0.7615 0.4838 0.7665 0.9519 0.7491 0.9575
9 0.7869 0.4664 0.8125 0.9557 0.7265 0.9577

vised models changes. We generate synthetic data in the same way as discussed in the experiments

on number of models. We set the error rate of base models to be either 40% or 20%. In either

way, we generate 10 models and change the number of classification models r from 1 to 9, and

accordingly, the number of clustering solutions ranges from 9 to 1. The proposed consensus max-

imization method combines all the supervised and unsupervised models. As baselines, a majority

voting method only combines supervised model outputs, and an unsupervised clustering ensemble

approach only combines unsupervised model outputs. As shown in Table 3.10, we compare the

proposed method, denoted as “C”, with the supervised and unsupervised ensemble approaches,

denoted as “S” and “U” respectively. It is clear that the performance of majority voting approach

improves, but the accuracy of clustering ensemble approach drops as the number of supervised

models increases. In general, incorporating more models into the ensemble help improve the fi-

nal prediction accuracy in both supervised and unsupervised ensemble approaches. Although the

proposed method always combines all the ten models, its performance also improves as the num-

ber of supervised models goes up when the total number of models is fixed. This is because the

goal of the method is to conduct classification, and more supervised models provide more label

information for the task. Therefore, the performance is positively correlated with the number of

supervised models. However, since label information is hard to obtain, when we are only given a

few supervised models but many unsupervised models, the proposed approach can still gain great

benefits from the consensus combination of all these models. As long as most of the base models

are relevant to the classification task, and they are drawn from heterogeneous sources, we should

combine their complementary expertise.
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Figure 3.5: Running Time w.r.t. #Models (2K) & #Classes (c)

Scalability. As discussed in Section 3.3, the time complexity of the proposed method is

quadratic in terms of the number of classes but linear with respect to the number of objects and

models. We evaluate the running time of the proposed method on synthetic data sets, which

are generated in the same way as in the experiments varying number of models. We generate

correlated base models and control the number of classes (c), the number of models (K supervised

and K unsupervised models) and the number of objects (n). As shown in Figure 3.5, the running

time is linear with respect to the number of objects. The running time increases linearly as the

number of models increases, whereas it increases quadratically with respect to the number of classes.

Therefore, the results are consistent with our analysis.

3.7 Summary

In this work, we take advantage of the complementary predictive powers of multiple supervised

and unsupervised models to derive a consolidated label assignment for a set of objects jointly. We

summarize base model outputs in a group-object bipartite graph and maximize the consensus by

promoting smoothness of label assignment over the graph and consistency with the initial labeling.

The problem is solved by propagating label information between group and object nodes iteratively.

We analyze the optimality and time complexity of the proposed solution. The proposed method

can be interpreted as conducting an embedding of object and group nodes into a new space. It can

also be interpreted as computing an un-normalized personalized PageRank. When a few labeled

46



objects are available, the proposed method can use them to guide the propagation and refine the

final hypothesis. If the class distribution is imbalanced, we normalize the out-links of each node in

the graph so that the influence of the minority class increases. In the experiments on 20 newsgroup,

Cora, DBLP and Sentiment data, the proposed method attains an improvement of between 2% to

10%.
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Chapter 4

Consensus Combination for Transfer
Learning

In Chapter 3, we presented an effective learning framework to integrate knowledge from multiple

heterogeneous information sources with labeled and unlabeled information. Although the proposed

framework can be applied to a variety of applications, there are some specific learning scenarios

that require more focused solutions. In this chapter and the following chapter, we introduce two

specific learning scenarios where the philosophy of model combination can be successfully applied.

In this chapter, we consider an important learning scenario where we wish to transfer labeled

information from multiple source domains to a target domain, which is called transfer learning.

In many applications, we have to borrow labeled information from multiple relevant domains with

abundant labeled data (source domains) to classify objects in the domain of interest (target do-

main). The challenge is that the data from the source domains usually follow different data distri-

butions compared with that in the target domain. To solve this problem, we propose to compute a

weighted combination of multiple models derived from source domains where weights are adapted

to represent each source domain’s predictive power on each target object [62]. Specifically, we map

the structures of a model onto the structure of the target domain, and then weight each model

locally according to its consistency with the neighborhood structure around each object. Experi-

mental results on text classification, spam filtering and intrusion detection data sets demonstrate

significant improvements in classification accuracy gained by the framework. As shown in the

transfer learning survey [136], our proposed method outperforms state-of-the-art transfer learning

approaches.
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4.1 Overview

We are interested in transfer learning scenarios where we learn from one or several training domains

and make predictions in a different but related test domain. Such knowledge transfer is possible

when the training domain(s) and the test domain have the same set of categories or class labels. We

further assume that we are only exposed to some labeled examples from the training domains but

do not have any labeled example from the test domain. The study of transfer learning is motivated

by the fact that people often exploit knowledge gained from related domains where labeled data

are abundant to classify examples in a new domain. Unfortunately, traditional supervised learning

techniques usually fail to transfer knowledge in this scenario because it requires the training and

the test data to be i.i.d. samples from the same distribution.

There are a few important observations about this problem. We notice that there are usually

several classification models available from the training domains. For example, the classifiers can

be trained from several relevant domains or built using different learning algorithms on the same

domain. Different models usually contain different knowledge and thus have different advantages,

due to the inductive bias of the specific learning technique as well as the distributional differences

among the training domains. Therefore, different models may be effective at different regions or

structures in the new and different test domain, and no single model can perform well in all regions.

We refer to these different models as base models. Ideally, we may wish to combine the knowledge

from these base models rather than using any single model alone to more effectively transfer the

useful knowledge to the new domain. For this task, one would naturally consider model averaging

that additively combines the predictions of multiple models. However, the existing model averaging

methods in traditional supervised learning usually assign global weights to models, which are either

uniform (e.g., in Bagging), or proportional to the training accuracy (e.g., in Boosting), or fixed

by favoring certain model (e.g., in single-model classification). Such a global weighting scheme

may not perform well in transfer learning because different test examples may favor predictions

from different base models. For example, when the base models carry conflicting concepts at a

test example, it is essential to select the model that better represents the true target distribution

underlying the example. In fact, based on principles of risk minimization, we can derive that there

exists a solution to assign per model and per example weights to combine multiple base models to
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maximize their combined accuracy on the new domain, and the combined accuracy is higher than

any single model acting alone. However, it is impossible to dynamically assign the optimal model

weights for each example precisely because P (y|x), the true conditional probability of class label

y given a test example x, is not known a priori. Past practice of cross-validation based weight

assignment is inapplicable since the weights would be assigned based on labels in the given training

domain(s) whose P (y|x) could be different from that of the test domain. Therefore our focus is to

find an approximation to this optimal local weight assignment for each test example.

We propose a graph-based approach to approximate the optimal model weights where the local

weight for a base model is computed by first mapping and then measuring the similarity between the

model and the test domain’s local structure around the test example. This similarity is measured

by comparing neighborhood graphs, and quantified in the weight assignment equation. Intuitively,

it favors classifiers whose mapped local structure is similar to the local structure around the test

example. For a particular example, if none of the mapped local structures is similar to the original

local structure in the target domain, the predicted label will be obtained by voting among its

neighbors inside the same local structure of the test set. This strategy ensures that the maximum

amount of predictive powers of the labeled information are extracted and transferred to the test

domain to make the predictions consistent with its underlying manifold structure.

Our main contributions to the task of transfer learning include the following: (1) We propose a

locally weighted ensemble framework to address the transfer learning problem, and demonstrate its

superiority over single models in terms of risk minimization when the weights are set optimally. (2)

None of the base models is required to be specifically designed for transfer learning, thus providing

great flexibility and freedom on what models to use. (3) We propose to approximate the model

weights based on the local manifold structures in the test domain, and provide neighborhood graph-

based estimation. (4) We provide a prediction adjustment step to propagate labels from nearby

examples when all base models are inconsistent with certain test examples.

We evaluate the proposed framework on three real tasks: spam filtering, text categorization,

and network intrusion detection. In each task, the test examples come from a different domain

than the training set. Our experiment results show that the locally weighted ensemble framework

significantly improved the performance over a number of baseline methods on all three data sets,

50



Training Set 1 Training Set 2 Test Set

R1 R2

R3

Figure 4.1: A Motivating Example

which shows the effectiveness of the proposed framework for transfer learning.

4.2 Locally Weighted Ensemble

Let us first look at a toy learning problem with two training sets and a test set shown in Fig-

ure 4.1. The two training sets have partially conflicting concepts and their decision boundaries are

the straight lines. For the test set, however, the optimal decision boundary is the V-shape solid

line. As can be seen, the regions R1 and R2 are “uncertain,” because the two training sets are

conflicting there. If we either simply collapse the two data sets and try to train a classifier on the

merged examples, or combine the two linear classifiers M1 and M2 trained from the training set 1

and set 2 respectively, then those negative examples in R1 and R2 will be hard to predict. Those

semi-supervised learning algorithms do not work either because they only propagate the labels of

the training examples to the unlabeled examples. In this case, there are conflicting labels in R1

and R2, causing ambiguous and incorrect information to be propagated. But it is obvious that,

if M1 is used for predicting test examples in R1 and M2 used for examples in R2, then we can

label all test examples correctly. Therefore, ideally, one wish to have a “locally weighted” ensemble

framework that combines the two models, and weighs M1 higher at R1 and M2 higher at R2. We

also observe that this data set has a property that neighbors along the same “clustering-manifold

structure” share the same class labels, which is a commonly-held assumption for reasonable prob-

lems. Below, we first introduce a locally weighted ensemble framework with weights dynamically

adjusted according to the model behavior at each test example. We then present an effective way

of approximating the model weights via local structure mapping around each example. The success

of the proposed method on this toy data set is demonstrated in Section 4.4.2.
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4.2.1 Optimal Domain Transfer Weights

Let x be the feature vector and y be the class label where x and y are drawn from feature space X

and label space Y respectively. For a set of k models M1, . . . , Mk, the general Bayesian model aver-

aging approach computes the posterior distribution of y as P (y|x) =
∑k

i=1 P (y|x, D, Mi)P (Mi|D),

where P (y|x, D, Mi) = P (y|x, Mi) is the prediction made by each model and P (Mi|D) is the pos-

terior of model Mi after observing the training set D. However, in transfer learning, since training

and test domains are different, we may wish to incorporate information about the test domain

and update the model prior for P (Mi|T ), where T is the test set. So P (Mi|D) should be replaced

by P (Mi|T ) in the weighted combination of model predictions. By this replacement, we take the

difference between training and test domains into consideration during learning. If the true distri-

bution P (y|x) is known, then for predictions on x, the other examples in the test set are irrelevant

to the model performance at x. In other words, the model weight P (Mi|T ) is actually P (Mi|x) at

x when P (y|x) is available. Different from traditional ensemble approaches, this locally weighted

model averaging method weights individual models according to their local behavior at each test

example. The final prediction for x is:

P (y|x) =
k∑

i=1

wMi,xP (y|x,Mi), (4.1)

where wMi,x = P (Mi|x) is the true model weight that is locally adjusted for x representing the

model’s effectiveness on the test domain.

The benefits of this locally weighted model averaging approach can be shown as follows. To

simplify the problem, we map the label space Y to {1, . . . , c} where c is the number of classes. We

then use a c × 1 vector f to denote the true conditional probability in the test domain where the

i-th element is fi = P (y = i|x). Supervised learning can output a c × 1 vector h that is close to

f for x. Let wi = wMi,x denote the weight for model Mi at test example x, and let w denote the

k × 1 weight vector. hi represents the predictions made by model Mi at x and is again a c × 1

vector where the j-th element is hi
j = P (y = j|x,Mi). H is used to represent a c× k matrix with

all the model predictions made for x where the ij entry is model Mi’s predicted P (y = j|x,Mi),

i.e., hi
j . Then the output of the model averaging framework for x is a vector he = Hw. Note that
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w satisfies the constraints that wi ∈ [0, 1] and
∑k

i=1 wi = 1, and thus the output vector hi from a

single model Mi is a special case of he when wi = 1 and other weights are zero. But we wish to

find a weight vector w which minimizes the distance between f and he. Under squared-error loss,

the following objective function should be minimized to obtain the optimal w:

w∗ = arg min
w

(f −Hw)T (f −Hw) + λ(wT I− 1), (4.2)

where I is a k×1 vector of 1 and λ is the regularization term. It is obvious that Eq. (4.2) represents

a least-square linear regression problem and the optimal solution is

w∗ = (HTH)−1(HT f − 1
2
λI). (4.3)

λ can be further calculated by substituting the above w∗ to the constraint (w∗)T I = 1. Usually

w∗i is a value between 0 and 1 so the weight vector of the optimal ensemble is different from that

of the single model. Therefore, the error of the model averaging framework on each test example

x will not be greater than that of any single model:

(f −Hw∗)T (f −Hw∗) ≤ (f − hi)T (f − hi) ∀i (4.4)

Thus, for each test example, there is a smaller chance to make a mistake if we combine the pre-

dictions from different models using the optimal weight vector. It is important to note that the

optimal weight vectors are different for different test examples, so weights should be decided locally.

This locally weighted ensemble framework differs from traditional model averaging methods in

the following ways: 1) In transfer learning problems, the traditional methods of assigning model

weights based on training set or assigning fixed prior weights are undesirable. Instead, we do not

assume that training and test domains follow same distributions but rather focus on the test set

when deriving the best model weights to transfer knowledge across domains. 2) Existing work

usually weights each model globally, but the proposed method assigns per example weights to each

model to identify variations in model performance for different test examples. As discussed, there

may not exist one model globally optimal for all the test examples. Usually, different test examples
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favor different models and therefore the per example weighting scheme is better than the global

weighting scheme in terms of classification accuracy.

One challenge is that the optimal per example weight vectors cannot be computed exactly in

reality, since the true target vector f for each test example x is not known a priori. Importantly

however, from its solution in Eq. (4.3), a model will have a higher weight if its prediction on x

is closer to the true P (y|x). In the rest of this chapter, we propose a graph-based approach to

approximate the optimal per example weight wMi,x under the “clustering-manifold” assumption

that P (x) is related to P (y|x). Other approximation heuristics can be developed under this locally

weighted framework as long as the weights reasonably approximate the model performance for

given test examples.

4.3 Graph-based Weight Estimation

As discussed in Section 4.2.1, the optimal weights can be approximated by assigning a higher

weight to a model that produces a more accurate label prediction for x. So the main task is to

formulate similarity between the model predictions and the unknown true target function. To

achieve this goal, we can model the underlying P (x) from the unlabeled test set in order to infer

P (y|x). Specifically, we make a “clustering-manifold” assumption, as commonly held in semi-

supervised learning, that P (y|x) is not expected to change much when the marginal density P (x)

is high. In other words, the decision boundary should lie in areas where P (x) is low. Under such

an assumption, we can compare the difference in P (y|x) between the training and the test data

locally with only unlabeled test data. However, probability density estimates are hard to obtain

precisely, especially when x is high-dimensional. Instead, we propose to cluster the test data and

assume that the boundaries between the clusters represent the low density areas. As a result, if

the local cluster boundaries agree with the classification boundary of M around x, then we assume

that P (y|x,M) is similar to the true P (y|x) around x, and thus the weight for model M ought to

be high at x. In the following, we formally give a procedure of computing the weight and illustrate

the procedure with an example.

For a test example x and a base model M to be combined, we first construct two graphs:

GT = (V, ET ) and GM = (V,EM ). In both graphs, the vertex set V contains all the test examples.
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Figure 4.2: Local Neighborhood Graphs around x

For GM , there is an edge connecting two test examples if and only if the examples are classified

into the same class by M . On the other hand, to construct GT , we cluster the test examples into c′

clusters and again, connect two test examples with an edge if and only if the two examples are in

the same cluster. Then we can approximate the model weight as the similarity between the local

structures around x in GT and GM . Specifically, under the clustering assumption, it is probable

that two examples are in the same class if they belong to the same cluster in GT . So we could

use the percentage of common neighbors of x found in GM and GT to approximate the model

accuracy on x and set the weight. Suppose the sets of neighbors for x in GM and GT are VM

and VT respectively. The model weight at x is proportional to the similarity of its local structures

between GM and GT :

wM,x ∝ s(GM , GT ;x) =

∑
v1∈VM

∑
v2∈VT

1{v1 = v2}
|VM |+ |VT | (4.5)

According to its definition, s(GM , GT ;x) reflects the degree of consistency in labeling the test

examples. If x has similar sets of neighbors in GM and GT , it is likely that the model M is consistent

with the underlying structure around x. As an example, Figure 4.2 shows the neighborhood graphs

of a test example x constructed from two supervised models and the clustering algorithm on the

test set. According to Eq. (4.5), the similarity between model 1 and the clustering structure is 0.75

at x, but that between model 2 and the structure is 0.5. Therefore, for x, model 1’s weight will

be set higher since it is more consistent with the local structure around x. This is a simple and
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effective method to compute the similarity.

The weight approximation is based on the clustering assumption which requires that the man-

ifold structure of the data is related to the conditional probability P (y|x). Though this is a

reasonable assumption for many problems, it may not always hold. Without knowing P (y|x) a

priori, it is impossible to verify the assumption. But this property is usually determined by the

nature of the learning tasks. An example where the assumption does not hold is sentiment clas-

sification, where the clustering structure of a set of product reviews reveals the topics but may

have nothing to do with whether the users like or dislike the product. Therefore, we propose to

check the validity of the clustering assumption by evaluating the clustering quality on the training

set using purity, entropy or F measure. If the task fails the test, we will ignore the weight ap-

proximation step, but simply combine the models using uniform weights. This strategy restricts

the use of the graph-based weight estimation only to the cases where the clustering assumption is

satisfied on both training and test sets. However, the strict checking criteria could guarantee the

high accuracy of the proposed method. For the cases where the clustering assumption does not

hold, other techniques need to be explored.

When the condition holds, we compute the per-example model weights based on Eq. (4.5) with

a normalization term:

wMi,x =
s(GMi , GT ;x)∑k
i=1 s(GMi , GT ;x)

, (4.6)

where Mi is one of the k models. Then the final prediction of the weighted ensemble E for x is:

P (y|E,x) =
k∑

i=1

wMi,xP (y|Mi,x), (4.7)

where P (y|Mi,x) is the prediction made by model Mi. Then the predicted label for x goes to y∗

which minimizes the risk:

y∗ = arg min
y

∫

y′∈Y
λ(y′, y)P (y|E,x)dy′ (4.8)

where λ(y′, y) is the cost incurred when the true class label is y′ but the prediction goes to y. With

the most commonly used zero-one loss function, y∗ = arg maxy P (y|E,x).
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4.3.1 Local Structure Based Adjustment

The weighting scheme shown in Eq. (4.7) works on the basis that at least some of the models do

reasonably well on predicting the label for x. However, if the concepts carried by all the models

conflict with the actual concept at x, the similarity measure s(GM , GT ;x) is expected to be low for

each model M . But after the normalization in Eq. (4.6), the locally weighted ensemble framework

would still make decisions based on these models for x and it is probable that the combined output

is still in conflict with the true one. In such a scenario, it is reasonable to abandon the labeled

information conveyed by the supervised models but rather rely on the local structure around x

only.

Since the similarity measure s(GM , GT ;x) reflects the degree of consistency between model

M ’s prediction and x’s neighborhood structure, we can use the average s(GM , GT ;x) over all M

to judge whether the labeled information is reliable or not. In fact, s(GM , GT ;x), representing

the average percentage of common neighbors shared by supervised models and clustering results,

is within [0, 1]. To be exact, when a test example shares the same neighbors in two graphs, their

similarity is 1, whereas if no common neighbor is found, it is 0. So for example, if only two models

are used and their s(GM , GT ;x) are both 0.01 at x, then we should avoid normalizing the weights

into 0.5 since both models should rather be discarded. Let savg(x) = 1
k

∑k
i=1 s(GMi , GT ; v) be the

average similarity between the base models’ predictions on x and the clustering structure around x.

Then if savg(x) ≥ δ, where δ is the threshold, we believe in the prediction obtained from Eq. (4.7);

otherwise, we discard all the supervised classifiers and construct an “unsupervised” classifier based

on the neighborhood of x.

The “unsupervised” classifier U is not trained on any labeled training set. Its prediction on

x is mainly determined by the neighbors of x with labels predicted by the combined classifier.

Specifically, P (y|U,x) can be decomposed as:

P (y|U,x) =
∑

C

P (y|U,x ∈ C)P (x ∈ C|x). (4.9)

Here, C is one of the clusters in the test set. We assume that the cluster membership is determin-
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istic, then P (x ∈ C|x) is approximated as follows:

P (x ∈ C|x) =





1 x ∈ C

0 otherwise
(4.10)

Hence, P (y|U,x) is approximately the same as P (y|U,x ∈ C) when x belongs to cluster C. We

can further approximate P (y|U,x ∈ C) as the average P (y|E,x) for x ∈ C ′ where C ′ contains

test examples which satisfy both x ∈ C and savg(x) ≥ δ. In other words, only examples that have

reliable predictions from the weighted ensemble will count in this procedure. Therefore,

P (y|U,x ∈ C) ≈ 1
|C ′|

∑

x∈C′
P (y|E,x) (4.11)

where |C ′| is the size of C ′. The above strategy can be simplified if we set P (y|E,x) = 1 when y

is the label for x predicted by E. So P (y|U,x ∈ C) can be estimated by a majority vote among

examples in C ′:

P (y|U,x ∈ C) ≈ P (y,x ∈ C ′|E)
P (x ∈ C ′)

≈ c(y, C ′|E)
|C ′| (4.12)

where c(y, C ′|E) is the number of examples with label y predicted by ensemble E in C ′. So the

probability of x having label y is the percentage of examples in the cluster C ′ that have y as their

class labels, where C ′ is the cluster that x belongs to and contains test examples with predicted

labels. The final predicted label for x is determined by Eq. (4.8) with P (y|E,x) replaced by

P (y|U,x). If zero-one loss function is applied, the class label for x whose cluster is C should be

the majority label prediction among the test examples which satisfy both x ∈ C and savg(x) ≥ δ.

4.3.2 Algorithm Description

The framework is summarized in Algorithm 2. We first verify whether the clustering structure

is relevant to the classification task by performing clustering on the training set. If the purity

of clustering on the training set is below 0.5, we simply combine models using uniform weights.

Otherwise, if the clustering quality is satisfactory, in step 2, we construct the neighborhood graphs

for both the supervised models and the clustering results. Then in step 3, the weight of each model

at each test example is computed, which reflects the consistency of model predictions among the
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Algorithm 2 Locally Weighted Ensemble Framework (LWE)

Input: (1)A training set D or k training sets D1, . . . , Dk

(2)k classification models M1, . . . , Mk (k > 1)
(3)A test set T which comes from a different domain
but the classification task is the same.
(4)A threshold δ and cluster number c′.

Output: The set of predicted labels Y for examples in T .
Algorithm:

1. Perform clustering on the training set(s), IF the average purity of clustering is less
than 0.5, set wMi,x = 1

k for all Mi and x, and compute the posterior using Eq.(4.7)
for each x ∈ T . RETURN.

2. Group test examples into c′ clusters and construct neighborhood graphs based on
the clustering results and all the k models. Set T ′ = Φ.

3. FOR each x ∈ T ,

• FOR each model Mi, compute the model weight wMi,x according to Eq.(4.5).

• IF savg(x) ≥ δ, decide x’s label based on the weighted ensemble’s output
P (y|E,x) obtained using Eq.(4.7). ELSE put x into T ′.

4. FOR each x ∈ T ′, predict x’s label from the “unsupervised” classifier U , i.e., esti-
mate P (y|U,x) using Eq.(4.11) or Eq.(4.12). RETURN.

test example’s neighborhood. We then separate the test examples by checking if its average model

weight is greater than a confidence threshold. For those test examples on which cross domain

models can make sufficiently accurate predictions, the final label predictions are decided by the

locally weighted ensemble. But, for the test examples that the models are not expected to classify

correctly, the labels are determined by majority voting among those neighbors with highly confident

predictions within the same cluster structure.

4.4 Experiments

In this part, we demonstrate the effectiveness of the locally weighted ensemble framework. The

algorithms are evaluated on various data sets covering many application domains. Results show

that the proposed framework could combine the predictive powers obtained from multiple sources

and gain great improvements in classification accuracy.
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4.4.1 Data Sets and Experiment Setup

We conduct experiments on one synthetic and four real data sets, where training and test distri-

butions are different.

Synthetic Data The two training sets and the test set as shown in Figure 4.1 are generated from

several Gaussian distributions with the same variance. In each training set, there are 40 positive

and 20 negative examples and in the test set, the number of positive and negative examples are 20

and 40 respectively.

Email spam filtering The email spam data set, released by ECML/PKDD 2006 discovery

challenge, contains a training set of publicly available messages and three sets of email messages

from individual users as test sets. The 4000 labeled examples in the training set and the 2500 test

examples for each of the three different users differ in the word distribution. The aim is to design

a server-based spam filter learned from public sources and transfer it to individual users.

Document classification The 20 newsgroups data set contains approximately 20,000 news-

group documents, partitioned across 20 different newsgroups nearly evenly. The Reuters-21758

corpus contains Reuters news articles from 1987. From the two text collections, we generate nine

cross-domain learning tasks. Both text collections have a two-level hierarchy so that each learning

task involves a top category classification problem but the training and test data are drawn from

different sub categories. For example, the goal is to distinguish documents from two top newsgroup

categories: rec and talk. So a training set involves documents from “rec.autos,” “rec.motorcycles,”

“talk.politics” and “talk.politics.misc,” whereas the test set includes sub-categories “rec.sport.baseball,”

“rec.sport.hockey,” “talk.politics.mideast” and “talk.religions.misc”. The strategy is to split the

sub-categories among the training and the test sets so that the distributions of the two sets are

similar but not exactly the same. The tasks are generated in the same way as in [41] and more

details can be found there.

Intrusion detection The KDD cup’99 data set consists of a series of TCP connection records

for a local area network. Each example in the data set corresponds to a connection, which is labeled
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Table 4.1: Data Sets Description
Task Data Sets Training Test
Email User1(U00)
Spam User2(U01)

Public Each user’s

Filtering User3(U02)
messages emails

Comp vs Sci (C vs S)
Rec vs Talk (R vs T)

Documents Documents
20

Rec vs Sci (R vs S)
from from a

News-
Sci vs Talk (S vs T)

a set of different set
group

Comp vs Rec (C vs R)
sub of sub

Comp vs Talk (C vs T)
categories categories

Orgs vs People
(O vs Pe)

Documents Documents

Orgs vs Place
from from a

Reuters
(O vs Pl)

a set of different set

People vs Place
sub of sub

(Pe vs Pl)
categories categories

Probing & R2L DOSDOS
Intrusions Intrusions

Intrusion DOS & R2L Probing
Detection

Probing
Intrusions Intrusions

DOS & Probing R2LR2L
Intrusions Intrusions

as either normal or an attack, with exactly one specific attack type. Some high level features are

used to distinguish normal connections from attacks, including host, service and traffic features.

In the experiments, we use the 34 continuous features. Attacks fall into four main categories:

DOS(denial-of-service), R2L(unauthorized access from a remote machine), U2R(unauthorized ac-

cess to local superuser privileges), Probing(surveillance and other probing). Since in reality, we

usually encounter the problem of detecting the variants of known attacks, it is realistic to have one

type of intrusions in the training set but another type in the test set. We create three data sets,

each contains a set of randomly selected normal examples and a set of attacks from one category.

Since the number of U2R attacks is small, we only use examples from DOS, R2L and Probing cate-

gories. Then three cross-domain learning tasks are generated by training from two types of attacks

to detect another type of attack. The details of the four real tasks are presented in Table 4.1.

Baseline methods We compare the weighted ensemble framework with different learning al-

gorithms. In particular, since most data sets are high-dimensional, the following commonly used

algorithms are appropriate choices: 1) Winnow (WNN) from learning package SNoW [28], 2) Lo-
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gistic Regression (LR) implemented in BBR package [72]; and 3) Support Vector Machines (SVM)

implemented in LibSVM [32]. When we only have a single source domain in the training, three

single classifiers are trained using the above learning algorithms and combined according to the

proposed weighted ensemble framework. But note that the proposed method is a general frame-

work so that any kind of models could be plugged in and transferred to the test domain. Since

semi-supervised learning (transductive learning) is closely related to the problem, we compare the

proposed method with Transductive Support Vector Machines (TSVM) implemented in SVM light

[95]. Furthermore, in the proposed framework, the two main steps are, predicting labels using

weighted classifiers if the classifiers are sufficiently accurate in terms of alignment with clustering

structures; and propagating the labels of predicted test examples to the unpredicted ones through

the clustering structure. To demonstrate the effectiveness of both steps, we include the following

three methods in the comparison: 1) A simple model averaging framework (SMA) where all model

predictions are combined using uniform weights; 2) The locally weighted ensemble framework with-

out the adjustment step, which simply adopts the weighted prediction for each test example. We

call it partial locally weighted ensemble method (pLWE); 3) The locally weighted ensemble frame-

work (LWE) involving both classifier combination and local structure based adjustment. Note

that SMA is one of the global ensemble methods where the model weights are set the same for all

the test examples. Suppose there are k models, then each model will have a weight 1
k at every test

example. We use the clustering package CLUTO [98], which is designed for high-dimensional data

clustering, to cluster the test set. Again, other clustering algorithms could be used as long as the

“clustering” assumption is satisfied.

We compare with a set of different baseline methods on the synthetic and intrusion detection

data sets. In each task, we have two source domains for training and the remaining one for the

testing. The proposed weighted ensemble methods (pLWE and LWE) are built upon two single

models trained from the two source domains using SVM. First, we compare pLWE and LWE with

the simple averaging method (SMA) based on the two SVM models. Second, we can choose the

training set as 1) one of the two source data sets, or 2) the union of the two source data sets. On

the three possible training sets, we study the performance of supervised learning models (SVM)

and semi-supervised models (TSVM) and compare them with the proposed methods.
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Performance measures To compare the performance of the classification methods, we look

at a set of standard evaluation metrics. First, we use classification accuracy, which is simply

defined as the percentage of correct predictions among all test examples. Second, under squared

loss function, the algorithms can be evaluated using Mean Squared Errors defined as follows:

L = 1
n

∑n
i=1(f(xi) − P(+|xi))2 where f(xi) is the output of the classifier, which is the estimated

posterior probability of xi belonging to positive class, P (+|xi) is the true posterior probability and

{xi}n
i=1 represents the test set. Another measure is used in evaluating the intrusion detection task:

the area under ROC curve (AUC), the best of which is 1 corresponding to 100% detection and 0%

false alarm. In the experiments, we focus on binary classification, but the framework can be easily

applied on multi-class tasks.

4.4.2 Performance Evaluation

In this part, we report the experimental results regarding the effectiveness of the locally weighted

ensemble. The results clearly demonstrate that on the transfer learning problems where training

and testing data have different distributions, the proposed locally weighted ensemble approach

greatly outperforms supervised, semi-supervised single-model algorithms, and a simple averaging

ensemble.

Performance Study The results of the toy problem introduced in Figure 4.1 are summarized

in Figure 4.3. The results of linear SVM on the training sets from two domains are the top two

on the left, denoted as M1 and M2. Due to the difference between training and test distributions,

both make incorrect predictions at “mirrored” areas. After merging the training sets, the SVM

model (“ALL” on top right) still does not work and the constructed hyperplane is obviously a

horizontal line. This is due to the fact that there exist conflicting concepts in the merged training

set. On the other hand, transductive SVM (TSVM bottom left) trained on merged training sets

fails as well since the label propagation is confused by the conflicting training examples. Simple

averaging of M1 and M2, shown as “SMA” (bottom middle) also makes mistakes in the uncertain

areas. However, examples incorrectly classified by these methods are now correctly predicted by

the locally weighted ensemble approach (LWE) and the decision boundary matches the V-shape

well. To see how this works, first, the clustering algorithm discovers the two clusters above and
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Figure 4.3: Performance on Synthetic Data

below the V-shape. For any example x ∈ R1, its neighbors in the cluster contain the examples in all

three regions R1, R2 and R3. At the same time, its neighbors predicted by M1 are those examples

∈ R1 and R3. Importantly, its neighbors predicted by M2 are only examples ∈ R1. Since there are

more common neighbors between the clustering structure and M1, M1 will be given higher weight

at x. Thus, according to M1, the examples in R1 are classified to be negative. Similarly, M2 will

be chosen to predict examples ∈ R2 as negative. In summary, by weighting the two models locally

according to the degree of consistency between models and clusters, the examples at the uncertain

areas are predicted correctly.

Results of all the methods on the Email Spam Filtering, 20 Newsgroup and Reuters sets are

summarized in Table 4.2 with best results shown in bold font. Refer to Table 4.1 for the details

of each task. It is clearly seen that, for all tasks and using any performance measure, the locally

weighted ensemble method (LWE) significantly improves the transfer learning performance com-

pared with other baseline methods. We can observe that most of the transfer learning problems

are tough due to the unknown discrepancy between the training and the test distributions. The

single-model methods (WNN, LR, SVM) usually have poor performance with accuracy around

0.7 and mean squared error greater than 0.1 on most of the tasks. The simple model averaging

algorithm using uniform weights can help reduce the expected error compared with single models.
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Table 4.2: Performance Comparison on a Series of Data Sets

Accuracy
Spam Filtering 20 Newsgroup Reuters

Methods
U00 U01 U02 C vs S R vs T R vs S S vs T C vs R C vs T O vs Pe O vs Pl Pe vs Pl

WNN 0.7680 0.7888 0.8696 0.6554 0.5938 0.7942 0.7557 0.8926 0.9341 0.7058 0.6520 0.5685
LR 0.7060 0.7528 0.8500 0.7349 0.7217 0.7885 0.7904 0.8334 0.9176 0.7355 0.7122 0.5565

SVM 0.6604 0.7288 0.7844 0.7118 0.6824 0.7816 0.7577 0.8156 0.9389 0.6934 0.6998 0.5694
SMA 0.7416 0.8012 0.8768 0.7272 0.6845 0.7980 0.7806 0.8563 0.9348 0.7339 0.7008 0.5685

TSVM 0.8352 0.8512 0.9528 0.7697 0.8995 0.8996 0.8559 0.8964 0.8826 0.7380 0.6989 0.5843
pLWE 0.8584 0.8820 0.9520 0.7872 0.7217 0.8845 0.8330 0.9193 0.9664 0.7694 0.7008 0.5972
LWE 0.8908 0.8844 0.9820 0.9744 0.9923 0.9823 0.9692 0.9816 0.9890 0.7967 0.7304 0.6852

Mean Squared Error
Spam Filtering 20 Newsgroup Reuters

Methods
U00 U01 U02 C vs S R vs T R vs S S vs T C vs R C vs T O vs Pe O vs Pl Pe vs Pl

WNN 0.1836 0.1713 0.1003 0.2775 0.2968 0.1575 0.1978 0.0851 0.0525 0.2462 0.3055 0.3774
LR 0.1944 0.1672 0.1013 0.2057 0.2036 0.1567 0.1624 0.1340 0.0613 0.2190 0.2444 0.3900

SVM 0.2374 0.1890 0.1489 0.2140 0.2353 0.1644 0.1826 0.1360 0.0453 0.2217 0.2230 0.2827
SMA 0.1556 0.1337 0.0870 0.2030 0.2183 0.1349 0.1614 0.0979 0.0430 0.1987 0.2318 0.3049

TSVM 0.1428 0.1394 0.0814 0.1749 0.1080 0.1128 0.1281 0.1198 0.1061 0.2250 0.2128 0.2688
pLWE 0.1218 0.1012 0.0550 0.1795 0.2027 0.1029 0.1399 0.0699 0.0302 0.1845 0.2333 0.3000
LWE 0.0988 0.1022 0.0333 0.0965 0.1409 0.0384 0.0534 0.0308 0.0140 0.1678 0.2120 0.2091

However, its performance is not quite satisfactory since they only rely on the labeled information

from the source domain and make no efforts in selecting useful information and transferring the

knowledge into the test domain. By incorporating the structure information of the test set into

learning, the transductive learning approach can beat the supervised learning methods most of

the times. But we can see more improvement achieved by using the proposed locally weighted

ensemble framework. After the first step of combining classifiers by weighting them judiciously,

both accuracy and mean squared error are improved over all the baselines. Then propagating

confident predictions along the clustering structure in the test set can significantly boost the per-

formance further. As an example, on the “C vs S” data set in the 20 newsgroup collection, the

worst single model only achieves around 66% accuracy whereas the best single model makes correct

predictions for 73% of the test examples. The tranductive SVM improves the accuracy to around

77% and LWE outperforms all the other methods by an impressive 97% accuracy. In most of the

experiments, the improvement in accuracy after utilizing weighted ensemble is over 10% and up to

30% for some problems. The experimental results on these transfer learning tasks demonstrate the

benefits of the empirical approximation of the optimal locally weighted ensemble framework. Both

per-example weighting scheme and the adjustment step in the framework can successfully filter out

the “harmful” labeled information, and thus help make the most reliable predictions.

Table 4.3 presents the performance of all methods on the three tasks of intrusion detection.

Each row corresponds to a learning problem characterized by the test domain and the other two

domains act as training, as discussed in Section 4.4.1. Besides the two training domains, a simple
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Table 4.3: Performance Comparison on Intrusion Detection Data Set
Accuracy

DOS Probing R2L ALL
Intrusions

SVM TSVM SVM TSVM SVM TSVM SVM TSVM
SMA pLWE LWE

DOS NA NA 0.9334 0.9352 0.9547 0.9303 0.9294 0.9281 0.9512 0.9609 0.9623
Probing 0.8171 0.7820 NA NA 0.6599 0.8384 0.5808 0.8433 0.5444 0.9627 0.9636

R2L 0.5551 0.7602 0.7873 0.8215 NA NA 0.7615 0.9036 0.5360 0.8020 0.8024
AUC

DOS Probing R2L ALL
Intrusions

SVM TSVM SVM TSVM SVM TSVM SVM TSVM
SMA pLWE LWE

DOS NA NA 0.9774 0.9797 0.9287 0.9188 0.9755 0.9543 0.9854 0.9858 0.9862
Probing 0.8877 0.8572 NA NA 0.5001 0.8982 0.8160 0.8866 0.9745 0.9772 0.9793

R2L 0.7114 0.8077 0.9206 0.8727 NA NA 0.8717 0.9435 0.9221 0.9399 0.9418

combination of examples from the two domains (represented as “ALL”) could be another source

of training. Based on each training source, we test the performance of SVM and TSVM on the

test domain. We also build two single models from each training domain and combine them using

uniform weights, which corresponds to SMA. The proposed pLWE and LWE are shown in the

last two columns. For the first two learning tasks, it is obvious that the proposed LWE shows

dominance for both accuracy and AUC. Especially on the test set of “Probing”, the two training

domains seem to be conflicting with each other, thus both the models trained from a union of the

two domains and the simple averaging of the two models result in an accuracy around 50% to 60%.

LWE achieves 96.36% accuracy by choosing the useful information from the two models. On the

last learning task, the algorithm TSVM trained on the combination of training domains wins over

the proposed method, which may be due to the fact that one of the single models we are combining

has insufficient amount of examples to be relied on. We note that the worst single model’s accuracy

is around 56% and the simple averaging method even degrades to having 54% accuracy. Based on

such weak classifiers, we could still improve the accuracy to 80%.

Parameter Sensitivity There are two important parameters in the proposed algorithm, the

number of clusters c′ in the test set and the selection threshold δ to filter the predictions with

low confidence. The traditional way of setting parameters through cross-validation cannot work

when the training and test distributions are different. Again, since the true target function of

the test domain is not known, there may not have effective methods to find the optimal values of

the parameters. So here, we just give some sensitivity experimental results and state some basic

principles in setting the parameters. We choose one cross-domain learning problem from each of the
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Figure 4.4: Parameter Sensitivity

three data sets: email spam filtering, and 20 newsgroup and Reuters set, and the results are shown

in Figure 4.4. We vary c′ from 2 to 10 and δ from 0.1 to 0.9, and put both of them on the x-axis. We

compare the accuracy of LWE approach when the parameters vary, with that of the best accuracy

achieved by the baseline methods. We fix δ = 0.7 when changing c′, and let c′ = 2 when tuning δ.

It is clearly seen that when the threshold rises from 0.1 to 0.5, the learning performance on all three

sets is gradually improving. After the point of 0.5, the performance maintains stable. This suggests

that a low threshold is not desirable since many inaccurate predictions from the supervised models

would be used in the adjustment step. Therefore 0.5 up to 1 could be a reasonable range to select

the threshold δ. However, the users could choose to lower down or raise the threshold to match

their beliefs in the abilities of the supervised models. As for the number of clusters c′, the best

performance in the experiments is achieved when c′ = 2. When c′ goes up, the over-fitting could

occur when the number of examples in each cluster is not sufficient enough to give an accurate

estimate of the model weights, and thus we could observe a drop in accuracy. We could also note

that in spite of the changes caused by parameter variation, the proposed LWE improves over the

best baseline method most of the time.

4.5 Related Work

The problem with different training and test distributions started gaining much attention very

recently. When it is assumed that the two distributions differ only in P (x) but not in P (y|x),

the problem is referred to as covariate shift [150, 87] or sample selection bias [178, 50]. The

instance weighting approaches [150, 87, 20] try to re-weight each training example with Ptest(x)
Ptrain(x)
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and maximize the re-weighted log likelihood. Another line of work tries to change the representation

of the observation x hoping that the distributions of the training and the test examples will become

very similar after the transformation [14, 144]. [118] transforms the model learned from the training

examples into a Bayesian prior to be applied to the learning process on the test domain. The major

difference between our work and these studies is that they depend on a single source of information

and try to learn a global single model that adapts well to the test set.

Constructing a good ensemble of classifiers has been an active research area in supervised learn-

ing [12, 137, 147]. By combining decisions from individual classifiers, ensembles can usually reduce

variance and achieve higher accuracy than individual classifiers. Some ensemble methods assign

weights locally [5, 91], but such weights are determined based on training data only. There has

not been much work on ensemble methods to address the transfer learning problem. In [43, 154],

it is assumed that the training and the test examples are generated from a mixture of different

models, and the test distribution has different mixture coefficients than the training distribution.

In [142], a Dirichlet Process prior is used to couple the parameters of several models from the

same parameterized family of distributions. Dai et al. [42] extend the boosting method to perform

transfer learning. Bennett et al. [15] proposed a methodology for building a meta-classifier which

combines multiple distinct classifiers through the use of reliability indicators. In [124, 47], a con-

sensus regularization approach has been proposed to enforce multiple classification models agree

on the unlabeled data. The proposed weighted ensemble provides a more general framework for

transfer learning because 1) the base models can be heterogeneous and can be any generative or

discriminative models, and 2) the method does not depend on specific applications and makes no

assumption about the form of distributions generating the training or the test data.

Multi-task learning(MTL) [29], which learns several related tasks at the same time with a shared

representation, considers single P (x) and multiple output variables, so the basic setting is different

from our problem. The “clustering” assumption in our work is exploited in some transfer learning

and semi-supervised learning works [41, 187], where clustering structure is utilized in smoothing

predictions among neighbors. Our approach differs from these methods by utilizing the assumption

in weighting different models locally to combine all sources of labeled information for knowledge

transfer.
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4.6 Summary

Knowledge transfer across domains with different distributions is an important problem in data

mining that has not been fully investigated. In this work, we take advantage of the different

predictive powers of several models trained on different domains or using different learning algo-

rithms. We propose a locally weighted ensemble framework to transfer the combined knowledge

to a new domain that is different from all the training domains. Importantly, the base models can

be constructed by traditional learning algorithms not specifically designed for transfer learning.

We analyze the optimality on expected error reduction by utilizing the locally weighted ensemble

framework as compared to both single models and globally weighted ensembles. Based on the

“clustering” assumption that the local structure of the test set is related to P (y|x), we design

an effective weighting scheme to approximate the optimal model weights. This is formulated by

comparing the neighborhood graphs of each model with those from clustering. The experimental

results on four real transfer learning data sets show that the proposed method improves over each

base model 10% to 30% in accuracy and is more accurate than both semi-supervised learning and

simple model averaging models. These results indicate that: 1) the locally weighted ensemble could

successfully identify the knowledge from each model that is useful to predict in the test domain and

transfer such information from all available base models; and 2) the proposed graph-based weight

estimation method makes the framework practical by effectively approximating the optimal model

weights.
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Chapter 5

Consensus Combination for Stream
Classification

In this chapter, we address the challenges faced by data stream classification by proposing and

analyzing a robust model combination framework. Evolving data streams can be observed in

many applications. As there exists distribution evolution or concept drifts, one actually may never

know either how or when the distribution changes. In this evolving environment, traditional single-

model algorithms that try to match with training distributions will fail. We propose a robust model

averaging framework combining multiple supervised models, and demonstrate both formally and

empirically that it can reduce generalization errors and outperform single models on stream data

[60]. The method is further extended to cope with data streams with imbalanced class distributions

[61, 59]. Studies in this chapter draw people’s attention to the inevitable concept drifts in data

streams, show how the traditional approaches become inapplicable when data distributions evolve

continuously, and most importantly, demonstrate the power of ensemble methods in stream data

classification. The proposed stream ensemble method has been further extended to handle scarcity

of labeled data [129] and novel class detection [127], and has been shown to be effective for malware

detection in cyber-security [128].

5.1 Overview

Many real applications, such as network traffic monitoring, credit card fraud detection, and web

click stream, generate continuously arriving data, known as data streams [6]. Since classification

could help decision making by predicting class labels for given data based on past records, classifica-

tion on stream data has been extensively studied in recent years, with many interesting algorithms

developed [88, 162, 49, 2]. However, there are still some open problems in stream classification as

illustrated below.
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First, most existing work makes the implicit assumption that the training data and the yet-

to-come testing data are always sampled from the “same distribution”, and yet this “same dis-

tribution” evolves over time. We demonstrate that this may not be true, and one actually may

never know either “how” or “when” the distribution changes. Thus, a model that fits well on

the observed distribution can have unsatisfactory accuracy on the incoming data. Practically, one

can just assume the bare minimum that learning from observed data is better than both random

guessing and always predicting exactly the same class label.

Another important issue is that existing stream classification algorithms typically evaluate their

performance on data streams with balanced class distribution. It is known that many inductive

learning methods that have good performance on balanced data would perform poorly on skewed

data sets. In fact, skewed distribution can be seen in many data stream applications. In these cases,

the positive instances are much less popular than negative instances. For example, the online credit

card fraud rate of US is just 2% in 2006. On the other hand, the loss functions associated with

classes are also unbalanced. The cost of misclassifying a credit card fraud as normal will impose

thousands of dollars loss on the bank. The deficiency in inductive learning methods on skewed

data has been addressed by many people [169, 34, 11]. Inductive learner’s goal is to minimize

classification error rate, therefore, it completely ignores the small number of positive examples and

predicts every example as negative. This is definitely undesirable.

In light of these challenges, we first provide a systematic analysis on stream classification prob-

lems in general. We show that the commonly held “shared distribution assumption” may not

be appropriate, and stream classification algorithms ought to consider situations where training

and testing distributions are different. We suggest a relaxed and realistic assumption as follows

and demonstrate the robustness of a model averaging and simple voting-based framework for data

streams. We further extends the framework to handle a more challenging situation in stream min-

ing, where the class distributions in the data are skewed. Our main contributions are as follows:

1. We demonstrate that assuming training and testing data follow the same distribution, as com-

monly held by much existing work, is inappropriate for practical streaming systems. Contrary

to common practice, in order to design robust and effective stream mining algorithms against

changes, an appropriate methodology is not to overly match the training distribution, such as
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by weighted voting or weighed averaging where the weights are assigned according to training

distribution.

2. We propose to use both model averaging of conditional probability estimators and simple

voting of class labels as a robust framework “against change” and argue that weighted av-

eraging/voting are inappropriate. We demonstrate both formally and empirically such a

framework can reduce expected errors and give the best performance on average when the

test data does not follow the same distribution as the training data.

3. We adapt the general stream classification framework to classify data streams with skewed

class distribution. We employ both sampling and ensemble techniques in the algorithm and

show their strengths theoretically and experimentally. The results clearly indicate that our

proposed method generates reliable probability estimates and significantly reduces the clas-

sification error on the minority class.

The rest of this chapter is organized as follows. Section 5.2 discusses the problems of the assump-

tions held by existing stream classification algorithms and introduces a realistic assumption. In

Section 5.3, we introduce a robust ensemble approach for mining concept-drifting data streams

and demonstrate its advantages through theoretical analysis. We present the adaptation of the

framework in classifying skewed data streams in Section 5.4. Experimental results on the ensemble

approach are given in Section 5.5. Finally, related work and summary of this chapter are presented

in Section 5.6 and Section 5.7.

5.2 Appropriate Assumptions to Mine Data Streams

Classification on stream data has been extensively studied in recent years with many important

algorithms developed. Much of the previous work focuses on how to effectively update the clas-

sification model when stream data flows in [2, 88, 103]. The old examples can be either thrown

away after some period of time or smoothly faded out by decreasing their weights as time elapses.

Alternatively, other researchers explore some sophisticated methods to select old examples to help

train a better model rather than just using the most recent data alone [170, 49, 162, 105, 146].

These algorithms select either old examples or old models with respect to how well they match
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the current data. Hence, they also implicitly make the assumption that the current training distri-

bution is considerably close to the unknown distribution that produces future data. Among these

methods, the weighted ensemble approaches [49, 105, 146, 162] were demonstrated to be highly

accurate, when the “stationary distribution assumption” holds true. Formally, we denote the fea-

ture vector and class label as x and y respectively. Data stream could be defined as an infinite

sequence of (xi, yi). Training set D and test set T are two sets of sequentially adjacent examples

drawn from the data stream. The labels in T are not known during classification process and will

only be provided after some period of time. The assumption held by existing algorithms is stated

as follows:

Assumption 1 (Shared Distribution - Stationary Distribution). Training D and test data T are

assumed to be generated by the same distribution P (x, y) = P (y|x) · P (x) no matter how P (x, y)

evolves as time elapses.

Given this assumption, one would ask: “what is the difference between stream mining and

traditional mining problems?” The most significant difference from traditional “static” learning

scenarios is that this shared distribution between training and testing data (abbreviated as “shared

distribution” in the rest of this chapter) evolves from time to time in three different ways: (1) feature

changes, i.e., the changes of the probability P (x) to encounter an example with feature vector x; (2)

conditional changes, i.e., the changes of the conditional probability P (y|x) to assign class label y to

feature vector x; and (3) dual changes, i.e., the changes in both P (x) and P (y|x). An illustration

with a real-world intrusion dataset can be found in the following discussions.

Under the “shared distribution assumption”, the fundamental problems that previous works

on stream mining focus on are mainly the following areas: 1) How often the shared distribution

changes? It could be continuous or periodical, and fast or slow; 2) How much data is collected to

mine the “shared distribution”? It could be sufficient, insufficient or “just don’t know”; 3) What

is this “shared distribution”? It could be balanced or skewed, binary or multi-class, and etc.; 4)

How the shared distribution evolves? There could be conditional change, feature change, or dual

change; and 5) How to detect the changes in shared distribution? Some methods do not detect

them at all and always keep the models up-to-date whereas others only trigger model reconstruction

if a change is suspected. Obviously, the validity of some of these problems relies on the “shared
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Figure 5.1: Evolution of P (y)

distribution assumption”, which we challenge below. Interestingly, given “stationary distribution

assumption”, stream learning would still be effectively the same as traditional learning if the set of

training examples collected to mine the “shared distribution” is sufficiently large so that additional

examples cannot construct a more accurate model [49].

Realistic Assumption The implicitly held assumption (Assumption 1) may not always be true

for data streams. As an example, let us consider the KDDCUP’99 “intrusion detection” dataset

that is widely used in the stream mining literature. We plot the evolution on the percentage of

intrusions using “averaged shifted histogram (ASH)” in Figure 5.1. The true probability P (y)

to encounter an intrusion is shown in thick solid line. Obviously, P (y) is very volatile. As time

elapses, P (y) continues to change and fluctuate. At some period, the change is more significant

than others. Except for the flat area between time stamps 2×105 and 3×105, P (y) from the past

is always different from that of the future examples. Under “shared distribution” assumption, the

training distribution ought to be accurately modeled as the ultimate target. However, it may not

precisely match future testing distribution due to continuous change.

The fluctuation in P (y) comes from changes in P (y|x) or P (x). Let + denote intrusions. By

definition, P (y = +) =
∑

P (x,y=+)∑
P (x) and

∑
P (x) is fixed for a given period, then P (y) ∝ P (x, y) =

P (y|x) ·P (x). Thus, the change in P (y) has to come from P (y|x), or P (x), or possibly both P (y|x)
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and P (x). Unless the dataset is synthesized, one normally does not know which of these three cases

is true, either before or after mining. Because of this, a model constructed from the training data

may not be highly accurate on the incoming data. This can particularly be an issue if the changes

are attributed to conditional probability P (y|x). As follows, we illustrate how P (x) and P (y|x)

change using the same intrusion detection example.

Figure 5.2 shows the histograms of the percentage of intrusions and normal connections given

the feature ‘srv diff host rate’ in three different time periods, where gray represents intrusions and

black indicates normal connections. The range of this feature, or the percentage of connections to

different hosts, remains within [0,1]. Due to the space limit, we only show the histograms between

0 and 0.25. Most bars between 0.25 and 1 have heights close to 0 and do not reveal much useful

information. It is obvious that the distribution of this feature, or visually the relative height of each

bar in the histogram representing the percentage of connections, is different among these three time

periods. This obviously indicates the change in P (x) as data flows in. In addition, the probability

distribution to observe intrusions given this feature is quite different among these three periods. For

example, in the first time period, P (y = +|x ∈ [0.095, 0.105]) = 0 but it later jumps to around 0.7

at the last time stamp. In the following, we will discuss how the “shared distribution” assumption

affects learning when the actual data evolves in the manner described above. It is worth noting

that some stream mining algorithms [170, 103, 49, 162, 105, 176, 146] discuss about the concept

drifts in streams and recognize the changes in the distribution that generates the data. However,
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they still make some assumptions about the forms of concept drifts. For example, most of them

assume that the most recent training data is drawn from the distribution which is considerably

close to that generates the test data [103, 49, 162, 105, 146].

Depending on when labeled training data becomes available, existing stream classification algo-

rithms belong to two main categories. The first group [2, 88] updates the training distribution as

soon as labeled example becomes available and flows in, and at the same time, obsolete examples

are either discarded or “weighted” out. Under the “shared distribution” assumption, such method

obviously assumes that the distribution of the next moment is the same as those observed data in

memory. Visually, it assumes a “shifted” or “delayed” P (y) as the distribution of the future, as

shown by the “Real Time Update” curve in Figure 5.1. To be precise, when either the number of

examples kept in memory is not sufficiently large or the fading weights are not set properly, P (y)

may not only be shifted but also carry a “different shape” from the plot constructed by average

shifted histogram. The second family of stream classification algorithms [49, 162, 105, 146] nor-

mally receives labeled data in “chunks”, and assumes that the most recent chunk is the closest to

the future distribution. Thus, they concentrate on learning from the most recent data accurately

as well as some old examples that are similar to the current distribution. Due to the changing

P (y), we observe both “shift” and “flattening” of the assumed future distribution, shown in the

“Batch Update” curve in Figure 5.1. “Flattening” is due to chunking and is hard to avoid since

labeled data may arrive in chunks. As a summary, for both families of methods, “shifting” is not

desirable and ought to be resolved.

In fact, “shift” or “delay” is inevitable under the “shared distribution assumption”, since the

culprit is the assumption itself: the future data is not known and can change in different ways

from the current data, but they are implicitly assumed to be the same. In order to overcome the

“delaying” problem, the main question is how one should judiciously use what is known in order to

optimally match the unknown future, with the least surprise and disappointment. Existing algo-

rithms have obviously taken the road to accurately match the training distribution with the hope

that it will perform well on the future data. However, from the above example as well as detailed

experiments on this example in Section 5.5, they could perform poorly when the future is quite

different from the current. By this token, we could see that the commonly held “shared distribu-
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• x is feature vector from feature space X and P (x) is the probability distribution of feature vectors.

• y is the class label from space Y and P (y) is the prior class probability.

• P (x, y) is the joint probability of having feature vector x and class label y, and P (y|x) is the
conditional probability for x to have label y.

• Stream data is an infinite sequence of X − Y pairs, {(xi, yi)} where the value of yi is known after
a certain time period.

• Since P (x, y) is evolving in streams, we use Pt(x, y) to represent the joint distribution over X − Y
space at time t.

• Training set D and test set T contain sequentially adjacent examples drawn from the stream data.
The true values of yi in T is not known at the time of learning.

• Training set D is drawn from distribution Pa(x, y), and test set T is drawn from Pe(x, y). a < e,
and Pa(x, y) and Pe(x, y) are different.

• Pa(x, y) and Pe(x, y) are similar in the sense that the model trained on D and evaluated on T is
more accurate than random guessing and fixed prediction.

Figure 5.3: Notations and Assumptions

tion assumption” may not be appropriate, and stream classification algorithms ought to consider

situations where training and testing distributions are different. Thus, we take this difference into

consideration and suggest a relaxed and realistic assumption as follows:

Assumption 2 (Learnable Assumption). The training and testing distributions are similar to the

degree that the model trained from the training set D has higher accuracy on the test set T than

both random guessing and predicting the same class label.

The core of this new assumption is that it does not assume to know any exact relationship

between current training and future test distribution, but simply assume that they are similar

in the sense that learning is still useful. As commonly understood, this is the bare minimum

for learning. It should be noted that this assumption is made concerning the inductive learning

problem. Mining data streams from other perspectives, such as clustering, association mining, may

require other appropriate assumptions. All the notations and assumptions we made are summarized

in Figure 5.3. With the relaxed assumption, we first elaborate the idea that one should only match

the training distribution to a certain degree, then we shall provide a straightforward framework

that can maximize the chance for models to succeed on future data with different distributions.
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5.3 A Robust and Extensible Ensemble Framework

In Section 5.2, we illustrate that when learning from stream data, it is unlikely that training and

testing data always come from the same distribution. This phenomenon hurts existing algorithms

that are based upon such an assumption. Some stream mining work has investigated the change

detection problem [101] or utilized the concept change in model construction [176]. However, since

there are only unlabeled examples available in the test data set, the “change detection” could at

most detect feature change. It is rather difficult to detect the change in P (y|x) before class labels

are given. The moral of the relaxed assumption (Assumption 2) ought to be understood in the way

that “strong assumptions are no good for stream mining”. To carry this understanding one step

further, any single learning method on data streams also makes assumptions one way or the other

on how to match the training distribution effectively and still perform well on testing distribution,

and these assumptions can also fail for a continuously changing data stream. Instead, we use a

naive model averaging based approach that does not depend specifically on any single technique

but combines multiple techniques wherever and whenever available. Formally, suppose k models

{M1, M2, . . . , Mk} are trained (e.g. using different learning algorithms) and each of them outputs

an estimated posterior probability P (y|x,Mi) for each test example x. We use simple averaging to

combine the probability outputs, thus fA(x) = 1
k

∑k
i=1 P (y|x,Mi), and its optimality is discussed

below.

Performance Guarantee As described above, we generate k models and each model Mi outputs

an estimated probability P (y|x,Mi) for x. For the sake of simplicity, we use M to denote any of

the k models Mi and use ΘM to represent the collection of the k models. Then any base model

M ’s expected mean squared error is the difference between its predicted probability and the true

probability integrated over all test examples:

ErrM =
∑

(x,y)∈T

P (x, y)(P (y|x)− P (y|x,M))2

= EP (x,y)[P (y|x)2 − 2P (y|x)P (y|x,M) + P (y|x,M)2]
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Suppose each model M has probability P (M) on the test set, then the expected error incurred by

randomly choosing a base streaming model to do prediction is the above error ErrM integrated

over all models:

ErrS =
∑

M∈ΘM

∑

(x,y)∈T

P (x, y)(P (y|x)− P (y|x,M))2

= EP (M),P (x,y)[P (y|x)2 − 2P (y|x)P (y|x, M) + P (y|x,M)2]

It should be noted that the above equation only evaluates the general performance of base streaming

models, but the predictions of test examples are not averaged. Now, we come to the analysis of

ensemble where the predictions are averaged. As introduced before, we make the following “model

averaging” prediction: fA(x) = EP (M)[P (y|x,M)]. Then the expected error of this ensemble

should be the error integrated over the universe of test examples:

ErrA=
∑

(x,y)∈T

P (x, y)(P (y|x)−EP (M)[P (y|x,M)])2

=EP (x,y)[P (y|x)2 − 2P (y|x)EP (M)[P (y|x, M)] + EP (M)[P (y|x,M)]2]

≤EP (x,y)[P (y|x)2 − 2P (y|x)EP (M)[P (y|x, M)] + EP (M)[P (y|x,M)2]]

The inequality holds since E[f(x))]2 ≤ E(f(x)2], i.e., EP (M)[P (y|x,M)]2 ≤ EP (M)[P (y|x,M)2].

Therefore, ErrA ≤ ErrM , i.e., probability averaging of multiple models is superior to any base

streaming model chosen at random with respect to reduction in expected errors on all possible

examples.

We are not claiming that model averaging is more accurate than any single model at any given

time. As a simple illustration, Figure 5.4 shows the errors of three models at time A and time

B. At a specific time stamp, a single model M that fits current distribution well could have much

better performance on test data than other models, e.g., M2 at time A and M1 at time B. At this

same time stamp, the probability averaging of three models (shown as AP) may not necessarily

be more accurate than using a specific model. However, in stream learning problems, it is hard

to find a single model that works well on all possible training-test pairs drawn independently from

continuously changing distributions. Since it is unknown which single model could be optimal at
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Figure 5.4: Error Comparison between Our Approach and Baselines

each and every time stamp, the current practice is to select a method and hope it will perform the

best at any time stamp. However, this could be risky. In the above example, the most accurate

model M2 at time stamp A turns out to be the least accurate at time stamp B. On the other hand,

the model averaging approach could reduce the probability of surprises and guarantee the most

reliable performance. The above analysis formally proves the expected error incurred by randomly

choosing a single model is greater than model averaging. Therefore, unless we know exactly which

model is always the best, unrealistic in a constantly changing stream environment, we could expect

model averaging to have the best expected performance.

Optimality of Uniform Weights The next question is how to decide P (M), or the probability

of model M being optimal. The simplest way is to set P (M∗) = 1 where M∗ is the most accurate

model and set other model’s probability as 0. This is one of the common practice adopted by some

stream mining algorithms where the model itself is fixed but its parameters are re-estimated as

labeled data flows in. As discussed above, the expected performance of a single model could be low,

when the distribution is continuously evolving. Another more sophisticated approach is introduced

in [162], where each model is assigned a weight that is reversely proportional to its error estimated

using training data. That is to say, P (M) is higher if the model M incurs less errors when cross-

validated using the training data. This weighting scheme is problematic because: 1) the training
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examples may be insufficient to reflect the true accuracy of model M , thus the weights may not

represent the true P (M); and 2) more importantly, the training and testing distributions may not

be the same as previous methods have assumed, thus the weights derived from the training data

would be essentially inappropriate for the test data. As illustrated in Figure 5.4, when training

and test data have different distributions, P (M) calculated using training data may be off from its

true value, thus leading to the unsatisfactory performance of weighted ensemble (denoted as WE)

as compared with the simple model averaging (AP). As follows, we formally illustrate why simple

averaging with uniform weights beats other non-uniform weighting schemes.

Suppose the weights of k models are {w1, w2, . . . , wk}, each of which is from [0,1] and satisfies

the constraint
∑k

i=1 wi = 1. Ideally, the weight of model Mi(1 ≤ i ≤ k) ought approximate its

true probability P (Mi) as well as possible. We use the following measure to evaluate the difference

between the assigned weights and the true weights:

D(w) =
k∑

i=1

(P (Mi)− wi)2 (5.1)

Let Θi be the hypothesis space where Mi is drawn, which has a uniform distribution with a constant

density Ci. In other words, we don’t have any prior knowledge about the optimality of a model

for a constantly changing stream. This is a valid assumption since the choice of optimal model is

changing with the evolving distribution. But we are not assuming that we know anything about the

future. The test distribution is somewhat revealed by the training distribution but which model fits

the distribution the best remains unknown. Another clarification is that P (Mi) 6= P (Mj)(i 6= j) on

a specific pair of training and test sets given in time. This means that we cannot have preference for

some model over others, since the preference needs to change continuously considering all possible

training and test sets in time. The constraint
∑k

i=1 P (Mi) = 1 should also be satisfied. As an

example, suppose there are two models, M1 and M2. Then P (M1) and P (M2) are both uniformly

distributed within [0,1]. At one evaluation point, P (M1) = 0.8 and P (M2) = 0.2, but at another

time, P (M1) = 0.3 and P (M2) = 0.7. It is clear that both M1 and M2 would be preferred at some

time but it is unknown when and how this preference is changing. As another example, look at

Figure 5.4 again, it is clearly shown that M2 and M1 are the best models with lowest test errors at

time A and B respectively. However, since the labels of test examples are not known in advance,
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we could never know this changing preference before mining.

Integrating the distance measure in Eq. (5.1) over all possible Mi, we could obtain the expected

distance as:

E[D(w)]=
k∑

i=1

∫

Θi

Ci(P (Mi)− wi)2dMi

=
k∑

i=1

∫

Θi

Ci(P (Mi)2 − 2P (Mi)wi + w2
i )dMi

The aim is to minimize E[D(w)] w.r.t w. Eliminating irrelevant items, the above could be simplified

to:

E[D(w)] = C1 − C2

k∑

i=1

wi + C3

k∑

i=1

w2
i (5.2)

where {C1, C2, C3} are positive constants. Since
∑k

i=1 wi = 1, the problem is transformed to:

Minimize
k∑

i=1

w2
i Subject to

k∑

i=1

wi = 1 and 0 ≤ wi ≤ 1

The closed form solution to this constrained optimization problem is: wi = 1
k (1 ≤ i ≤ k). There-

fore, when we have no prior knowledge about each model, equal weights are expected to be the

closest to true model probabilities on the test data over some period of time, thus giving the best

performance on average. This is particularly true in the stream environment where the distribu-

tion is continuously changing. As shown in the following experiments, the best model on current

data may have bad performance on future data, in other words, P (M) is changing and we could

never estimate the true P (M) and when and how it would change. Hence non-uniform weights

could easily incur overfitting, and relying on a particular model should be avoided. Under such

circumstances, uniform weights for the models are the best approximate of the true P (M).

5.4 Classifying Imbalanced Data Streams

In this section, we propose a simple strategy that can effectively mine data streams with skewed

distribution. The choice of methods incorporates the analysis made in section 5.3.
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Stream Ensemble Framework Skewed distribution can be seen in many data stream applica-

tions. In these cases, the positive examples are much less popular than the negative ones. Also,

misclassifying a positive example usually invokes a much higher loss compared to that of misclas-

sifying a negative example. Therefore, the traditional inductive learner, which tends to ignore

positive examples and predict every example as negative, is undesirable for skewed stream min-

ing. We propose a simple, systematic method to handle skewed data streams. We will start with

problem definition, and then present the algorithm.

In some applications such as credit card application flow, the incoming data stream arrives

in sequential chunks, S1,S2, . . . ,Sm of the same size n. Sm is the most up-to-date chunk. The

data chunk that arrives next is Sm+1, and for simplicity, we denote it as T. The aim of stream

classification is to train a classifier based on the data arrived so far to estimate posterior probabilities

of examples in T. We further assume that the data comes from two classes, positive and negative

classes, and the number of examples in negative class is much greater than the number of positive

examples. In other words, P(+) ¿ P(−). In this two-class problem, only the posterior probability

of positive class P(+|x) is computed, then that of the negative class is simply 1−P(+|x). To have

accurate probability estimation, we propose to utilize both sampling and ensemble techniques in

our framework.

Sampling. We split each chunk S into two parts P, which contains positive examples in S, and

Q, which contains negative examples in S. The size of P is much smaller than that of Q. For

example, in network intrusion detection data, there are 60262 normal examples, but only 168 U2R

attacks. Also, it should be noted that in stochastic problems, a given x could appear in both P

and Q for several times. The count of x in each class will contribute to the calculation of posterior

probability P(y|x).

In stream mining, we cannot use all data chunks as training data. First, stream data is huge

in amount and it is usually impossible to store all of them. Second, stream mining requires fast

processing, but a huge training set will make the classification process extremely slow, thus is

unsatisfactory. Model reconstruction on new data usually reduces the expected error. In other

words, the best way to construct a model is to build it upon the most recent data chunk. This

works for examples in negative class since these examples dominate the data chunk and are sufficient
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for training an accurate model. However, the positive examples are far from sufficient. An inductive

learner built on one chunk will perform poorly on positive class. To enhance the set of positive

examples, we propose to collect all positive examples and keep them in the training set. Specifically,

the positive examples in the training set is {P1,P2, . . . ,Pm}. On the other hand, we randomly

under sample the negative examples in the last data chunk Qm to make the class distribution

balanced.

Ensemble. Instead of training a single model on this training set, we propose to generate

multiple samples from the training set and compute multiple models from these samples. The

advantage of ensemble is that the accuracy of multiple model is usually higher than that of a

single model trained from the entire dataset. As shown in Section 5.3, the expected error could be

reduced by training multiple models. The samples should be as uncorrelated as possible so that

the base classifiers would make uncorrelated errors which could be eliminated by averaging. To get

uncorrelated samples, each negative example in the training set is randomly propagated to exactly

one sample, hence the negative examples in the samples are completely disjoint. As for positive

examples, they are propagated to each sample. We take a parameter r as input, which is the ratio

of positive examples over negative examples in each sample. r is typically between 0.3 to 0.6 to

make the distribution balanced. Let np be the number of positive examples in the training set,

then the number of negative examples in each sample is: nq = dnp/re. Suppose k samples are

generated, then a series of classifiers C1, C2, . . . , Ck are trained on the samples. Each classifier Ci

outputs an estimated posterior probability f i(x) for each example x in T. We use simple averaging

to combine probability outputs from k models:

fE(x) =
1
k

k∑

i=1

f i(x) (5.3)

It is worth noting that this differs from bagging: 1) in bagging, bootstrap samples are used as

training sets, and 2) bagging uses simple voting while our framework generates averaged probability

for each test example. The outline of the algorithm is given in Algorithm 3. We assume that each

data chunk can fit the main memory.
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Algorithm 3 Ensemble Algorithm for Skewed Stream Classification

Input: Current data chunk S, test data T, number of ensembles k, distribution ratio r, set of positive
examples AP
Output: Updated set of positive examples AP, posterior probability estimates for examples in T,
{fE(x)}x∈T.
Algorithm:

1. Split S into P and Q according to their definitions.

2. Update AP as {AP,P}
3. Calculate the number of negative examples in the sample nq based on the values of r and np.

4. for i = 1 to k do

(a) Draw a sample of size nq from Q without replacement, O.

(b) Train a classifier Ci on {O,AP}.
(c) Compute posterior probability estimates {f i(x)}x∈T using Ci

5. Compute posterior probability estimates by combining ensemble outputs {fE(x)}x∈T based on Eq.
(5.3).

Error Reduction by Sampling We explain how the use of sampling techniques contributes

to error reduction. First, we give some background in error decomposition. We expect that a

well trained classifier could approximate the posterior class distribution. However, the estimate

of posterior probability is not necessarily the true probability. Therefore, in classification, besides

Bayes error, there are remaining errors, which could be decomposed into bias and variance. The

bias measures the difference between the expected probability and the true probability, whereas

the variance measures the changes in estimated probabilities using varied training sets. As stated

in [159, 162], given x, the output of a classifier can be expressed as:

fc(x) = P(c|x) + βc + ηc(x) (5.4)

where P(c|x) is the posterior probability of class c given input x, βc is the bias introduced by the

classifier and ηc(x) is the variance of the classifier given input x.

In two-class problem, x is assigned to positive class if P(+|x) > P(−|x). The Bayes optimal

boundary is therefore represented by a set of points x∗ that satisfy P(+|x∗) = P(−|x∗). However,

since fc(x) is different from P(c|x), the estimate of Bayes boundary is incorrect, the boundary error

is b = xb − x∗ where xb are the estimated boundary points that have f+(xb) = f−(xb). In [159],

it shows that classification error rate is linearly proportional to the boundary error. So we will

focus on the analysis of boundary error from now on. In analogy with bias-variance decomposition
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described in Eq. (5.4), the boundary error can be expressed in term of boundary bias and boundary

variance:

b =
η+(xb)− η−(xb)

s
+ βb (5.5)

where s = p′+(x∗) − p′−(x∗) is independent of the trained model, and βb is (β+ − β−)/s. If ηc(x)

is independent and has Gaussian distribution with zero mean and variance σ2
ηc

. Then b is also

normally distributed with mean βb and variance σ2
b where

σ2
b = (σ2

η+
+ σ2

η−)/s2 (5.6)

Now we show that sampling techniques in the proposed framework reduces variance in skewed

data classification. Our sampling approach could reduce σ2
b not at the expense of increase in βb. If

only the current data chunk is used to train the model, the positive examples are so limited that

the error of the classifier would mainly come from the variance. In the proposed framework, the

positive examples in the previous time shots are incorporated into the training set. Adding positive

examples would reduce the high variance σ2
b caused by insufficient data. When there are concept

changes, the bias may be affected by adding old examples, but it may increase very slightly. The

reason is that the negative examples of the training set are from the current data chunk, which are

assumed sufficient and reflecting the current concept. Therefore, the boundary between the two

classes could not be biased much by including old positive examples in the training set. Even if the

bias βb is increasing, the reduction of variance is dominant and the overall generalization accuracy

is improved.

5.5 Experiments

We conduct an extensive performance study using both synthetic and real data sets, where training

and testing distributions are explicitly generated differently, to demonstrate the effectiveness of the

averaging ensemble against change. As discussed below in detail, this empirical study validates the

following claims: 1) ensemble based on model averaging would reduce expected errors compared

with single models, thus is more accurate and stable; and 2) previous weighted ensemble approach

is less effective than ensemble based on simple voting or probability averaging.
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5.5.1 Experiment Setup

Synthetic Data Generation We describe how to generate synthetic data and simulate its

concept changes as follows.

Form of P (x). x follows a Gaussian distribution, i.e., P (x) ∼ N(µ,Σ), where µ is the mean

vector and Σ is the covariance matrix. The feature change is simulated through the change of the

mean vector where µi is changed to µisi(1+t) for each data chunk. t is between 0 to 1, representing

the magnitude of changes, and si ∈ {−1, 1} specifies the direction of changes and could be reversed

with a probability of 10%.

Form of P (y|x) in deterministic problems. In binary problems, the boundary between two

classes is defined using function g(x) =
∑d

i=1 aixixd−i+1 − a0 where a is the weight vector. Then

the examples satisfying g(x) < 0 are labeled positive, whereas other examples are labeled negative.

ai is initialized by a random value in the range of [0,1]. The value of a0 is set based on the values

of {a1, . . . , ad} and controls the degree of skewness. In multi-class problems, suppose there are l

classes and the count of examples in each class is {C1, C2, . . . , Cl}. We calculate the value of g(x)

for each x using the definition given in binary problems. All the examples are ranked in ascending

order of g(x). Then the top C1 examples are given class label 1, examples with ranks C1 + 1 to

C1 + C2 are assigned to class 2, and so on. In both problems, the concept change is represented

by the change in weight ai, which is changed to aisi(1 + t) for every data chunk. The parameters

t and si are defined in the same way as in the feature change.

Form of P (y|x) in stochastic problems. We use a sigmoid function to model the posterior

distribution of positive class: P (+|x) = 1/(1 + exp(g(x))). The concept changes are also realized

by the changes of weights as illustrated in the deterministic scenario. The skewness in binary

classification problems is also controlled by a0 in g(x).

Real-World Data Sets We test several models on KDD Cup’99 intrusion detection data set,

which forms a real data stream. This data set consists of a series of TCP connection records, each

of which can either correspond to a normal connection or an intrusion. We construct two data

streams from the 10% subset of this data set:

Shuffling. Randomly shuffle the data and partition it into 50 chunks with varying chunk size
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from 5000 to 10000.

Stratified Sampling. Put the data into class buckets: One for normal connections and one for

intrusions. Generate 50 chunks as follows: 1) choose an initial P (y), 2) sample without replacement

from each bucket to form a chunk that satisfies P (y), 3) evolve P (y) and sample from the remaining

data in the buckets as the next chunk, and finally, 4) put data sampled in step 2 back to the buckets

and repeat steps 2 and 3. The chunk size is also varied from 5000 to 10000.

Measures and Baseline Methods For a data stream with chunks T1, T2, . . . , TN , we use Ti as

the training set to classify Ti+1 and the distribution of the test set Ti+1 is not necessarily the same

as that of Ti. We evaluate the accuracy of each model. For the classifier having posterior probability

as the output, the predicted class label is the class with the highest posterior probability under

zero-one loss function. Another measure is mean squared error (MSE), defined as the averaged

distance between estimated probability and true posterior probability P (y|x). In problems where

we are only exposed to the class labels but do not know the true probability, we set P (y|x) = 1 if

y is x’s true class label, otherwise P (y|x) = 0. We are comparing the following algorithms: single

models built using Decision Tree (DT), SVM, Logistic Regression (LR) and ensemble approaches

including Weighted Ensemble (WE), Simple Voting (SV) and Averaging Probability (AP). Different

from averaging ensemble framework, the weighted ensemble approach assigns a weight to each

base model which reflects its predictive accuracy on the training data (obtained by ten-fold cross

validation) and the final prediction outputs are combined through weighted averaging. In previous

work, such weighted ensembles are shown to be effective when the “shared distribution” assumption

holds true. In our experiments, we evaluate its performance upon the relaxed assumption. For all

the base learning algorithms, we use the implementation in Weka package [172] with parameters set

to be the default values. In the averaging ensemble framework, either SV or AP, the base streaming

models could be chosen arbitrarily. We test the framework where base models are constructed from

either different learning algorithms or different samples of the training sets.

For a learning algorithm Ah, we build a model based on Ti and evaluate it on Ti+1 to obtain

its accuracy pih and MSE eih. There are altogether N − 1 models and we report its average

accuracy (Aacc) and average MSE (Amse). Furthermore, in each of the N − 1 runs, we compare

the performance of all algorithms and decide the winner and loser in the following way: if pih is
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within m% of maxh pih, algorithm Ah is a winner in that run, similarly, if pih is within m% of

minh pih, it is a loser. In other words, we tolerate some small difference between two algorithms,

if their accuracies are the same with respect to the “margin tolerance rate” m, we regard their

performance as the same. We report the number of wins and loses for each algorithm (#W and

#L). With winners ranking the first, losers ranking the third and all other algorithms occupying the

second position, we give N−1 ranks to each algorithm and obtain the mean and standard deviation

of the ranks (AR and SR). A good algorithm will have a higher accuracy, a lower MSE and average

rank closer to 1. If it has a lower standard deviation in the ranks, the learning algorithm is more

stable.

5.5.2 Empirical Results

We report the experimental results comparing the two ensemble approaches (SV, AP) with single

model algorithms (DT, SVM, LR) as well as weighted ensemble method (WE). As discussed below

in detail, the results clearly demonstrate that on the stream data where training and testing

distributions are different and fast evolving, the two ensemble approaches have the best performance

on average with higher accuracy and lower variations. Therefore, when facing unknown future, the

ensemble framework is the best choice to minimize the number of bad predictions.

Test on Concept-Drifting Stream Data We generate four synthetic data streams, each of

which is either binary or multi-class and has chunk size 100 or 2000. The distribution within

a data chunk is unchanged whereas between data chunks, the following changes may occur: 1)

each data chunk could either be deterministic or stochastic (in binary problem); 2) in each chunk,

the Gaussian distribution of the feature values may either have diagonal variance matrix or non-

diagonal one; 3) either one of the three concept changes (feature change, conditional change and

dual change) may occur; 4) the number of dimensions involved in the concept change is a random

number from 2 to 6; and 5) the magnitude of change in each dimension is randomly sampled from

{10%, 20%, . . . , 50%}. Since lots of random factors are incorporated into the simulated concept

change, it is guaranteed that training and testing distributions are different and evolving quickly.

Each data set has 10 dimensions and 100 data chunks. The margin tolerance rate is set to be 0.01.

From Table 5.1, it is clear that the two ensemble approaches (SV and AP) have better perfor-
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Table 5.1: Performance Comparison on Synthetic Stream Data
Binary Stream Data

Chunk Size 100 Chunk Size 2000
Measure

DT SVM LR WE SV AP DT SVM LR WE SV AP
Aacc 0.7243 0.7591 0.7346 0.7461 0.7595 0.7690 0.8424 0.8318 0.8366 0.8339 0.8370 0.8369
Amse 0.2731 0.2387 0.2625 0.1889 0.2379 0.1752 0.1540 0.1649 0.1601 0.1262 0.1597 0.1242

AR 2.2323 1.6465 2.1111 1.8889 1.5152 1.4848 2.1313 1.8485 1.6869 1.7980 1.5455 1.5455
SR 0.8902 0.6898 0.8193 0.7544 0.5414 0.5414 0.9757 0.8732 0.8765 0.8687 0.7460 0.7460

#W 30 47 28 34 50 53 41 46 58 49 60 60
#L 53 12 39 23 2 2 54 31 27 29 15 15

Multi-Class Stream Data
Chunk Size 100 Chunk Size 2000

Measure
DT SVM LR WE SV AP DT SVM LR WE SV AP

Aacc 0.5111 0.5295 0.5298 0.5301 0.5320 0.5314 0.4991 0.4939 0.4920 0.5130 0.4950 0.5139
Amse 0.1745 0.1413 0.1272 0.1210 0.1872 0.1208 0.1764 0.1461 0.1322 0.1246 0.2020 0.1244

AR 2.3636 1.9293 1.9798 1.8283 1.8788 1.7273 2.0202 2.2626 2.2424 1.6667 2.1111 1.4040
SR 0.8263 0.7986 0.7822 0.5159 0.6589 0.6197 0.8919 0.8758 0.9045 0.4949 0.9023 0.5330

#W 22 35 31 23 28 36 38 28 31 34 35 61
#L 58 28 29 6 16 9 40 54 55 1 46 2

mance (best are highlighted in bold font) regardless of the measures we are using, the problem type

(binary or multi-class) and the chunk size. Take the binary problem with chunk size 100 as an ex-

ample. AP proves to be the most accurate and stable classifier with the highest accuracy (0.7690),

lowest MSE (0.1752), 53 wins and only 2 loses. SV is quite comparable to AP with 50 wins and 2

loses. The best single classifier SVM wins 47 times and loses 12 times and WE approach seems to

suffer from its training set-based weights with only 34 wins but 23 loses. These results suggest the

following: when the “same distribution” between training and testing data does not exist: 1) there

are no uniformly best single classifiers, even decision tree, which has the worst average performance,

still wins 30 times among all 99 competitions. The large variabilities of single models result in their

high expected errors; 2) on average, ensemble approaches, simple voting or probability averaging,

are the most capable of predicting on future data with unknown distributions; 3) assigning a weight

to each base learner even hurts the predictive performance on testing data since the distribution it

tries to match is different from the true one.

For binary streams, we also record the results on the first 40 chunks to see how the concept

evolution affects the classification performance. The results indicate that even within the same

data stream, the best single classifier for the first 40 chunks is different from the best one on the

whole data set. Take the stream data with chunk size 100 as an example. At first, LR has 18 wins,

compared with DT (4 wins) and SVM (14 wins), it appears to be the best on average. However,

later, SVM takes the first place with 47 wins (DT 30 and LR 28). This clearly indicates that

in a stream whose distribution evolves, a model which performs well on current data may have

poor performance on future data. Since we never know when and how the distribution changes,
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Table 5.2: Ensemble on Real Data
Shuffling

DT SVM LR WE SV AP
Aacc 0.9961 0.9941 0.9957 0.9964 0.9975 0.9975
Amse 0.0039 0.0059 0.0043 0.0028 0.0025 0.0024
AR 1.9592 2.5306 1.9388 1.6939 1.0000 1.0000
SR 0.8406 0.7665 0.8013 0.7959 0 0
#W 18 8 17 25 49 49
#L 16 34 14 10 0 0

Stratified Sampling
DT SVM LR WE SV AP

Aacc 0.9720 0.9744 0.9699 0.9707 0.9755 0.9755
Amse 0.0280 0.0256 0.0301 0.0259 0.0245 0.0232
AR 1.6531 1.5510 1.6122 1.5306 1.2245 1.2245
SR 0.9026 0.7654 0.8854 0.8191 0.4684 0.4684
#W 31 30 32 33 39 39
#L 14 8 13 10 1 1

depending on one single classifier is rather risky. On the other hand, ensemble based on averaged

probability is more robust and accurate, which is the winner for classifying data streams with regard

to the average performance (ranks around 1.5 while others rank more than 2 on average). Ensemble

based on simple voting (SV) produces results similar to that of AP in binary stream problems, but

is not that competitive in multi-class problems. The reason may be that two class problems are

easier for prediction tasks, so the probability outputs of a classifier may be rather skewed, greater

than 0.9 or less than 0.1. So there isn’t much difference between simple voting and averaging

probability in this case. However, when the number of classes grows large, it is quite unlikely

that the predicted probability is skewed. The strengths of probability averaging over simple voting

is therefore demonstrated on multi-class problems. As for the weighted ensemble approach, it

sometimes increases the predictive accuracy, but sometimes gives even worse predictions compared

with single models. Whether it performs good or not is dependent on how the training and

testing distributions match. In this sense, the other two simple ensemble methods are more robust

since they are not based on the assumption that training and testing data come from the same

distribution.

Test on KDD Cup’99 Data In Section 5.5.1, we describe the two data streams we generate

from the KDD Cup’99 intrusion detection data set and how the training and testing distributions
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Figure 5.5: Accuracy and Mean Squared Error on Real Data

are made different explicitly. Also, as illustrated in Section 5.2, both P (x) and P (y|x) undergo

continuous and significant changes in this stream data. Results of various methods on the two

streams are summarized in Table 5.2 where margin tolerance rate is set to be 0.001. Similar to earlier

results on simulated streams, the advantage of the ensemble framework is clearly demonstrated.

The two ensemble approaches not only increase the accuracy of single models but also occupy the

first place in most of the evaluations. The most significant improvements could be observed on

the data set generated by shuffling, where accuracy goes up from 0.9961 to 0.9975 and the number

of wins increases from 18 to 49 after combining outputs of multiple models. The performance

of SV and AP is almost the same for these two data sets. As discussed in the synthetic data

experiments, SV and AP are expected to have similar predictions when the estimated probabilities

of each class are skewed in binary problems. Another observation is that the weighted ensemble

approach could improve over a single model but the improvements are less significant compared

with simple averaging. This phenomenon again shows that the weighting scheme cannot survive

the relaxed assumption where training and testing distributions could be different since it fits the

training data too “tightly”.

Figure 5.5 reveals some detailed information about the evaluation results (Accuracy and MSE

w.r.t Chunk ID) on the first data set where data records are randomly shuffled. To exclude the

effects of different scales, we normalize the measures by the maximal value. It is obvious that

the probability averaging ensemble (AP) is the most accurate classifier in general with normalized
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accuracy close to 1 and mean squared error below 0.5. Also, as shown in both plots, as measures

of single models fluctuate within a wide range, the performance of probability averaging ensemble

is much more stable. This clearly shows the benefits of using our ensemble framework when the

testing distribution is unknown and departed from the training distribution. On average, the

ensemble would approximate the true distribution more accurately than single models, with least

number of loses. The weighted ensemble could achieve higher accuracy than single-model classifier

but still has larger variance and worse average performance compared with AP. For example, the

highest normalized MSE of AP is only around 0.6, but over 0.8 for weighted ensemble approach.

Test on Skewed Data Streams

We focus on binary classification problems with skewed distributions and generate synthetic data

streams with different kinds of concept drifts. Six kinds of stream data sets are generated, each

of which is either deterministic or stochastic, and has either feature, conditional, or dual concept

changes. Each data set has 10 dimensions, 11 chunks with chunk size 1000. The percentage of

rare examples is 1%, and for each data chunk, two dimensions are chosen randomly to change 10%.

The last chunk in the data set is recognized as the test data, and all other data chunks are used

for training. Since we are more interested in probability estimates of the positive class, the mean

square error of the positive class is reported for each kind of stream data. The results are obtained

by calculating errors of 10 randomly generated data sets. We use C4.5, Naive Bayes, and logistic

regression as base learners. We would evaluate the proposed method that handle skewed streams in

two perspectives: (1) are the probability estimates accurate? and (2) is the classification accurate?

Evaluation Criteria There are some standard measures for evaluating the quality of probability

estimation. A popular one is mean squared error, defined as:

L =
1
n

n∑

i=1

(f(xi)− P(+|xi))2 (5.7)

where f(xi) is the output of ensemble, which is the estimated posterior probability of xi, and

P(+|xi) is the true posterior probability of xi. Since in skewed mining problems, rare class is more

interesting and usually associated with higher classification cost, we would like to have a low L for
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examples in the rare class.

In skewed mining problems, classification error is not a good measure since the examples in the

majority class will dominate the result, and it is hard to tell whether rare examples are classified

correctly. Therefore, for this kind of problems, the following evaluation metrics are typically used:

Precision (Detection Rate), Recall, and False Alarm Rate. To show how these metrics are corre-

lated, we use both ROC curve and recall-precision plot to demonstrate the experimental results.

The ROC curve represents the trade-off between detection rate and false alarm rate and plots a

2-D graph, with x-axis as the false alarm rate and y-axis as the detection rate. The ideal ROC

curve has 0% false alarm rate and 100% detection rate. In other words, the area under ROC curve

is 1 in the ideal case. Therefore, a good algorithm would produce a ROC curve as close to the

left-top corner as possible. So the area under ROC curve (AUC) is an evaluation metric, where a

better algorithm will have an AUC value closer to 1. Another method to evaluate the results is to

plot the correlation between recall and precision. The recall-precision plot will have precision as

the y axis and recall as the x axis.

Baseline Methods We show that both sampling and ensemble techniques could help reduce the

classification error. Therefore, the baseline methods we are comparing with are:

No Sampling + Single Model (NS). Only the current data chunk is used for training, which is

highly skewed. A single model is trained on the training set.

Sampling + Single Model (SS). The training set is the same as that used in our proposed

ensemble methods. It is obtained by keeping all positive examples seen so far and under sampling

negative examples in the current data chunk. The difference lies in the classification model which

is a single model in this method, but a multiple model in our proposed method.

Accordingly, we denote our method as Sampling + Ensemble (SE), which adopts both sampling

and ensemble techniques. By comparing with the above two baseline methods, the strengths of

sampling and ensemble could be illustrated well.

In the experiments, the base learners include both parametric and non-parametric classifiers:

Decision Tree, Naive Bayes and Logistic Regression. We use the implementation in Weka package

[172]. The parameters for single and ensemble models are set to be the same, which are the default

values in Weka.
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Table 5.3: Mean Squared Error on Deterministic Stream Data
Decision Trees Naive Bayes Logistic RegressionChanges

SE NS SS SE NS SS SE NS SS
Feature 0.1275 0.9637 0.6446 0.0577 0.8693 0.4328 0.1501 0.8117 0.5411

Conditional 0.0943 0.9805 0.5500 0.0476 0.8830 0.4380 0.1301 0.8944 0.5729
Dual 0.0854 0.9521 0.5174 0.0664 0.8596 0.4650 0.1413 0.8371 0.5525

Table 5.4: Mean Squared Error on Stochastic Stream Data
Decision Trees Naive Bayes Logistic RegressionChanges

SE NS SS SE NS SS SE NS SS
Feature 0.0847 0.6823 0.4639 0.0314 0.5371 0.2236 0.0974 0.5311 0.3217

Conditional 0.0552 0.6421 0.4463 0.0299 0.5675 0.2449 0.1029 0.6578 0.4151
Dual 0.0684 0.6758 0.4107 0.0301 0.5981 0.2556 0.0887 0.6388 0.4075

Empirical Results In this part, we report the experimental results regarding the effectiveness

and efficiency of our proposed method. The results are shown in Table 5.3 (deterministic) and

Table 5.4 (stochastic), respectively.

It is clearly seen that, no matter how the concept changes, our proposed method (SE) greatly

improves the mean square error of the positive class in both deterministic and stochastic data

streams. The decrease in error rate is significant, from 0.9 to 0.1 on the deterministic data, and

from 0.6 to 0.06 on the stochastic data on average. NS performs badly since only the current

data chunk is used for training and it is highly skewed. When training on a skewed data set, the

inductive learner would build a model that tends to ignore positive examples and simply classify

every example as negative. Therefore, NS generates an error close to 1 regarding mean square error

on the positive class. According to the performance of SS, the mean square error of the positive

class is reduced to around 0.5 after we oversample positive examples and under sample negative

examples. The reason is that the class distribution is more balanced after incorporation of more

positive examples. This helps improve the performance on the positive class. However, the single

model would still have a high error rate caused by classification variance.

Although SE utilizes exactly the same training sets as used in SS, the performance of SE is

much better since the ensemble could reduce the variance of classifier by averaging the outputs. As

seen in Tables 5.3 and 5.4, for our proposed method, the mean square error on the positive class is

usually less than 0.1. The most significant reduction in error rate is 0.45 (SE vs. SS) and 0.88 (SE
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vs. NS). On average, the error decreases around 40% after using sampling and further reduces to

10%-20% if we use both sampling and ensemble.

It can be observed that Naive Bayes has the best performance on synthetic data set. This

is due to the fact that synthetic data is generated using a Gaussian distribution with a diagonal

covariance matrix, which guarantees independence between features.

Thus we conclude that our proposed method consistently improves posterior probability esti-

mates of minority class under feature, conditional, and dual concept drifts in both deterministic

and stochastic applications.

5.6 Related Work

Sample selection bias [178] investigates the effect on learning accuracy when the training data is a

“biased” sample of the true distribution. Although the true target function to be modeled, P (y|x),

does not “explicitly” change, its value can be wrong in various ways in the biased training data.

Previously, decision tree based model averaging has been shown to be helpful to correct feature bias

or the bias where the chance to sample an example into the training set is independent on y given

x [178]. The most important difference of our work from these previous studies is: (1) P (y|x) in

our problem is allowed to explicitly change and can change significantly, (2) changes in P (y|x) are

combined with changes in P (x). To consider the significance of our work under sample selection

bias formulation, our comprehensive results significantly extend the previous work and demonstrate

that model averaging can reliably correct sample selection bias where biased conditional probability

is quite different from unbiased testing data.

Class imbalance has become an important research problem in recent years since more people

have realized that imbalance in class distribution causes suboptimal classification performance [169,

34]. Many solutions have been proposed to handle this problem by preprocessing data, transforming

algorithms or post-processing models [1]. Among them, balancing training set distribution is the

most popular approach. Specifically, many sampling algorithms have been developed to either

under sample majority examples or oversample minority examples [11, 1]. These methods may

improve the prediction accuracy of minority class, however, they are greatly challenged by stream

applications where infinite data flow and continuous concept drifts are present. Therefore, a general
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framework for dealing with skewed data stream is in great demand.

Skewed stream problems have been studied in the context of summarization and modeling

[38, 107]. However, the evaluation of existing stream classification methods is done on balanced data

streams [88, 162, 49, 2]. In reality, the concepts of data streams usually evolve with time. Several

stream classification models are designed to mine such concept-drifting data streams [162, 49],

however, they regard concept drifts as changes in conditional probability. In our work, it is shown

that concept changes may occur in both feature and conditional probability. In [52, 180], two

application examples of skewed data mining are studied. But we provide a more general framework

for building accurate classification models on skewed data streams.

5.7 Summary

In this chapter, we demonstrate that the distributions of stream data can evolve in some unknown

manner, and models matching training distribution well may perform poorly in continuously chang-

ing distributions. In order to design robust and effective stream mining algorithms against changes,

an appropriate methodology is not to overly match the training distribution, such as by weighted

voting or weighed averaging where the weights are assigned according to training distribution. On

these basis, we propose an ensemble framework based on model averaging of conditional proba-

bility estimators. We demonstrate both formally and empirically such a framework can reduce

expected errors and give the best performance on average when the test data does not follow the

same distribution as the training data. Since the property of expected error reduction is proven

formally, the framework is expected to have robust and better performance regardless of chosen

baseline models. In particular, we extend the framework using sampling techniques to mine skewed

data streams. The algorithm first generates a balanced training set by keeping all positive exam-

ples and under sampling negative examples. Then the training set is further divided into several

samples and multiple models are trained on these samples. The final outputs are the averaged

probability estimates on test data by multiple models. The error reduction is significant according

to experimental results.

97



Part II

Inconsistency Detection
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Chapter 6

Inconsistency Detection across
Multiple Heterogeneous Sources

In Part I, we presented our contributions to the field of consensus combination for effective multi-

source classification. Reaching consensus among heterogeneous information sources gives us the

gains in classification performance. On the other hand, by exploring the differences among sources,

we can identify something unusual and interesting, and thus the second part of this thesis is to

detect anomalies or inconsistencies across multiple information sources. Although the problem of

anomaly detection has been widely studied [31], most of the existing approaches identify anomalies

from one single data source. Different from existing work, we propose to identify inconsistencies

across multiple information sources as a new type of meaningful anomalies in this part. In this

chapter, we define the general problem of inconsistency detection across multiple heterogeneous

sources and propose an effective spectral framework to identify such anomalies. In Chapters 7

and 8, we propose effective inconsistency detection solutions for information network analysis and

system debugging problems.

In this chapter, we propose to detect objects that have inconsistent behavior among multiple

heterogeneous sources [64]. A set of objects can be described from various perspectives (multi-

ple information sources). The underlying clustering structure of normal objects is usually shared

by multiple sources. However, anomalous objects belong to different clusters when considering

different aspects. To identify such objects, we compute the distance between different eigen de-

composition results of the same object with respect to different sources as its anomalous score, and

give interpretations from the perspectives of constrained spectral clustering and random walks over

graph. Experimental results on several UCI as well as DBLP and MovieLens datasets demonstrate

the effectiveness of the proposed approach. The proposed method can detect anomalies that cannot

be found by traditional anomaly detection techniques and provide new insights into the application

area.
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Figure 6.1: Illustration of Horizontal Anomaly Detection Problem

6.1 Overview

Today’s information explosion generates significant challenges for anomaly detection when there

exist many large, distributed data repositories consisting of a variety of data sources and formats.

While traditional anomaly detection approaches focus on identifying objects that are dissimilar to

most of the other objects from a single source [31], we aim at detecting objects that have “incon-

sistent behavior” among multiple information sources, which we refer to as “horizontal anomaly

detection”. Distinction between traditional anomaly detection and horizontal anomaly detection is

shown in Figure 6.1 where traditional anomaly detection explores the single information source ver-

tically and horizontal anomaly detection explores horizontally the inconsistencies among multiple

information sources instead. In the following discussions, we will give a few practical examples.

In today’s information age, there are usually several sources of information that describe dif-

ferent properties or characteristics of individual objects. For example, we can learn about a movie

from its basic information including genre, cast, plots, etc., or the tags users give to the movie, or

the viewing histories of the users who watched the movie. On each of the information source, a

relationship graph can be derived to characterize the pairwise similarities between objects where

the edge weight indicates the degree of similarity. As an example, Figure 6.2 shows the similarity

relationships among a set of movies derived from two information sources: movie genres and users.

The genre information may indicate that two movies that are “animations” are more similar than

two movies one of which is an “animation” and one of which is a “romance” movie. Similarly,

movies watched by the same set of users are likely to be more similar than movies that are watched

by completely different sets of users.
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Figure 6.2: A Horizontal Anomaly Detection Example based on Movie Similarity

Clearly, objects form a variety of clusters or communities based on each similarity relationship.

For example, two clusters can be found from both of the similarity graphs in Figure 6.2. One

cluster represents the movies that are animations, which are loved by kids; while the other cluster

represents romance movies, which are liked by grown-ups. Most of the movies belong to the same

cluster even though different information sources are used. However, there are some objects that

fall into different clusters with respect to different sources. In this example, movie “Wall-E” by

genre is liked by kids, but is liked by grown-ups based on the user watching history, and thus it

is likely to be a horizontal anomaly. Finding such “inconsistent” movies can help film distributors

better understand the expected audiences of different movies and make smarter marketing plans.

Some example scenarios of horizontal anomaly detection are listed as follows. 1) In social

networks, detecting people who fall into different social communities with respect to different online

social networks would be interesting for user behavior analysis; 2) In bioinformatics, inconsistencies

across different gene-gene interaction similarity graphs derived from patients with and without a

certain disease represent the genes which are critical to the disease; 3) For better business marketing,

one wants to find out the person who bought quite different items compared with his peers in the

same social community based on the two information sources drawn from user purchase history and

friendship networks; and 4) Inconsistencies across multiple module interaction graphs derived from

different versions of a software project can be used to assist programmers. Besides the examples
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discussed above, identifying horizontal anomalies across multiple sources can find applications in

many other fields including smarter planet, internet of things, intelligent transportation systems,

marketing, banking, etc.

To the best of our knowledge, this is the first work on identifying horizontal anomalies by

exploring the inconsistencies among multiple sources. Most of the existing work on mining multiple

information sources [188] concerns merging and synthesizing models, rules, patterns obtained from

multiple sources by reconciling their differences, such as multi-view learning [37, 53, 151, 57] and

multi-view clustering [21, 183, 121, 33]. As for multi-source anomaly detection, the studies focus

on how to identify anomalies within a specific context [153, 165]. Although these studies take two

types of attributes (behavioral and contextual [31]) into consideration, they cannot be generalized

to horizontal anomaly detection spanning multiple information sources. The reason is that they

simply detect anomalies from the behavioral attributes while the contextual attributes only provide

the context in which the anomalies are detected. In some sense, these contextual anomalies are

still extracted from one source, whereas the proposed method can identify objects with inconsistent

behavior across multiple sources.

We assume that each individual information source captures some similarity relationships be-

tween objects that may be represented in the form of a similarity matrix. Note that although

in the example shown in in Figure 6.2, the horizontal anomalies can be found by checking if its

direct neighbors are different in the two graphs, this simple solution cannot work in practice. The

reason is that the clustering structures are much more complicated and noisy in real problems,

and thus a global method that can detect both the underlying clustering structure and horizontal

anomalies is needed. Therefore, we propose a systematic approach to identify horizontal anomalies

from multiple similarity matrices. A summary of this chapter is as follows:

Method. We combine the input matrices into one matrix that captures the information from

each source, but also ensures that individual object relationships are preserved. We then adopt

spectral techniques to identify the key eigenvectors of the graph Laplacian of the combined matrix,

and identify horizontal anomalies by computing cosine distance between the components of these

eigenvectors.

Interpretation. We give theoretical interpretations of the proposed method from both spectral
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clustering and random walk perspectives. The method can be regarded as conducting spectral

clustering on multiple sources simultaneously with a joint constraint that their clusterings should

be similar, and objects that are clustered differently are categorized as horizontal anomalies. The

horizontal anomalies can also be regarded as those having long commute time in the random walk

defined over the graph.

Experiments. We validate the proposed algorithm on both synthetic and real data sets, and

the results demonstrate the advantages of the proposed approach in finding horizontal anomalies.

For example, we find “One Flew Over the Cuckoo’s Nest” and “Pulp Fiction” as the most anoma-

lous, while “Star Wars” as the least anomalous among the top 20 popular movies from a set of

7595 movies.

6.2 Methodology

Suppose we have a set of N objects X = {x1, x2, . . . , xN} and there are P information sources that

describe different aspects of these objects. Let W (t) denote the similarity matrix derived from the

t-th information source where the ij-th entry w
(t)
ij represents the similarity between objects xi and

xj (i 6= j) with respect to the t-th source. Let W
(t)
ii = 0 for all t and i. The objective is to assign

an anomalous score si to each object xi, which represents how likely the object is anomalous when

its behavior differs among the P different information sources. In the simple example shown in

Figure 6.2, there are two matrices that describe pairwise similarities among the 7 objects, and we

expect that x4 will have the highest anomalous score.

In this section, we present a HOrizontal Anomaly Detection (HOAD) algorithm to solve the

proposed problem. The basic idea is as follows: As discussed in Section 6.1, we assume that the

available information sources on the same set of objects have similar clustering structures, and

thus if an object is assigned to different clusters when using various information sources, it can be

regarded as a horizontal anomaly. This suggests that we can first cluster the objects separately

in each source and compare the clustering results. However, because clustering is unsupervised

learning, we do not know the correspondence between clusters in different clustering solutions. We

solve this problem by adding the constraint that the same object should be put into the same cluster

by all the clustering solutions as often as possible. Another problem is that in reality, an object
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Figure 6.3: Illustration of Combined Graph for the Example in Figure 6.2

never belongs to just one cluster for sure, usually it can be assigned to several clusters with certain

probabilities. Therefore, soft clustering is more desirable. In the proposed approach, we calculate

the anomalous degree of an object based on how much its clustering solutions differ from each

other. To simplify the notations, we start with the cases having two distinct information sources.

We state the method in Section 6.2.1, give spectral clustering and random walk interpretations in

Section 6.2.2, and explain how it is generalized to multiple information sources in Section 6.2.3.

6.2.1 HOAD Algorithm

Suppose we have N objects: {x1, . . . , xN} and two N×N similarity matrices on the objects: A and

W , where aij and wij define the similarity between xi and xj from different aspects. The algorithm

consists of two major steps: 1) Conduct soft clustering on A and W together with the constraint

that an object should be assigned to the same cluster; 2) Quantify the difference between the two

clustering solutions to derive anomalous scores.

The details are as follows. We start from constructing two similarity graphs from A and W .

In each of them, each node denotes an object. If the similarity between two objects xi and xj is

greater than 0, we connect an edge between xi and xj and the edge weight equals to the similarity

between them. We construct a combined graph by connecting the nodes which correspond to

the same object in the two graphs with an edge weighted m. m, a large positive number, is a

penalty parameter. An example of such a graph is illustrated in Figure 6.3 for the toy example
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Algorithm 4 HOAD algorithm

Input: similarity matrices A and W , number of eigenvectors k, penalty parameter m,
Output: anomalous score vector ~s;
Algorithm:

Compute matrix Z according to Eq. (6.1)
Compute graph Laplacian L as in Eq. (6.2)
Conduct eigen-decomposition of L and Let H be the k smallest eigenvectors with smallest eigenvalues
Compute anomalous score of each object si based on Eq. (6.4) and Eq. (6.5) for i = 1, . . . , N
return ~s

shown in Figure 6.2. The set of nodes in the combined graph consists of two copies of the objects:

{x1, . . . , xN , x′1, . . . , x
′
N} (2N nodes in total). Let M be an N ×N diagonal matrix with m on the

diagonal:

M = diag(m,m, . . . , m).

Clearly, M = m · I where I is an N ×N identify matrix and m represents the constraint put across

the two information sources. Let Z be the adjacency matrix of the combined graph, which is a

2N × 2N matrix:

Z =




A M

MW


 . (6.1)

We cluster the nodes in the combined graph. As can be seen, there are two copies of the objects

in the combined graph and with the help of the edge between the copies of the same object, we

cluster the objects in the same way across different sources. In Section 6.2.2, we give a theoretical

justification of this claim. First, we compute the graph Laplacian L as:

L = D − Z (6.2)

using degree matrix D (a 2N × 2N diagonal matrix):

D = diag
({

2N∑

j=1

zij}2N
i=1

)
. (6.3)

Secondly, compute the k smallest eigenvectors of L (with smallest eigenvalues) and let H ∈ R2N×k

be the matrix containing these eigenvectors as columns. We divide H into two submatrices U and
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Figure 6.4: Algorithmic Flow of HOAD Algorithm

V each with size N × k so that H =




U

V


. Therefore, the i-th and (i + N)-th rows of H are

represented as:

~ui = ~hi, ~vi = ~hi+N , (6.4)

which correspond to two “soft clustering” representations of xi with respect to A and W respec-

tively. Finally, compute the anomalous score for object xi using cosine distance between the two

vectors:

si = 1− ~ui · ~vi

||~ui|| · ||~vi|| . (6.5)

The algorithm flow is summarized in both Algorithm 4 and Figure 6.4. We start with two N×N

similarity matrices A and W , and combine them together with the penalty constraint matrix M

to form a combined matrix Z. After that, we compute Z’s graph Laplacian L and conduct eigen

decomposition on L. H contains the k smallest eigenvectors of L as column vectors, and it is

divided into two N ×k submatrices U and V . For each i ∈ {1, . . . , N}, ~ui and ~vi, i.e., the i-th rows

of U and V , can be regarded as the two clustering results of xi. We compute the anomalous score

of xi as the cosine distance between ~ui and ~vi, which is 1 − cos(θ) with θ representing the angle

between the two vectors.
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6.2.2 Interpretations

In this part, we explain the algorithm from the perspectives of spectral clustering and random

walk.

Clustering on Combined Graph . As can be seen, we first perform spectral clustering on the

combined graph in Algorithm 4, but we replace the clustering step by anomalous score computation.

Now we show that the algorithm can be interpreted as conducting constrained spectral clustering

on the two similarity graphs simultaneously. The basic idea of spectral clustering is to project the

objects into a low-dimensional space (defined by the k smallest eigenvectors of the graph Laplacian

matrix) so that the objects in the new space can be easily separated. We call the projections as

spectral embeddings of the objects. It has been shown that the matrix formed by the k eigen vectors

(H) of L is the solution to the following optimization problem [125]:

minH∈RN×k Tr(H ′LH) s.t. H ′H = I (6.6)

Since we define the graph Laplacian L as D−Z (Eq. (6.2)), the objective function is thus equivalent

to:

minH∈R2N×kTr(H ′DH)− Tr(H ′ZH)

s.t. H ′H = I (6.7)

Let f(H) = Tr(H ′ZH) and g(H) = Tr(H ′DH). H is a 2N × k matrix, and again we divide it into

two submatrices U and V : H = [U V ]T . Also, from the definition of Z (Eq. (6.1)), we have:

f(H) = Tr


[U ′ V ′]




A M

MW







U

V







=Tr(U ′AU + V ′WV + V ′MU + U ′MV )

=Tr(U ′AU) + Tr(V ′WV ) + 2m
N∑

i=1

k∑

j=1

uijvij (6.8)
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Suppose the degree matrices for A and W are Da and Dw respectively:

Da = diag
({

N∑

j=1

aij}N
i=1

)
, Dw = diag

({
N∑

j=1

wij}N
i=1

)
.

The row sum of M is always m. Based on the definition of D (Eq. (6.3)), we have

g(H)=Tr


[U ′ V ′]







Da0

0 Dw


 + mI







U

V







=Tr(U ′DaU + V ′DwV + mU ′U + mV ′V )

(6.9)

Also,

H ′H = I ⇔ [U ′ V ′]




U

V


 = I ⇔ U ′U + V ′V = I

By putting f(H) and g(H) together and ignoring the constant term m · Tr(U ′U + V ′V ), we have

an equivalent formulation of the problem in Eq. (6.6):

minU,V ∈RN×kTr(U ′(Da −A)U) + Tr(V ′(Dw −W )V )− 2m
n∑

i=1

k∑

j=1

uijvij

s.t. U ′U + V ′V = I (6.10)

Clearly, each of the first two terms in Eq. (6.10) corresponds to the spectral clustering problem

using A or W alone. The third term acts as the constraint that the two clustering solutions should

be similar (cosine similarity). Different from spectral clustering, we didn’t actually perform the

clustering procedure. Therefore, our method can be regarded as embedding the objects into two

eigenspaces with respect to the two information sources while putting the constraint that the two

projections should be similar. The parameter m controls how much we impose the constraint.

Note that in Algorithm 4, the i-th row vector in U (the first N rows of H) and V (the last N

rows of H) contain the projections of object xi. Due to the principle of spectral clustering, if the

spectral embeddings ~ui and ~vi are close to each other, the corresponding object xi is more likely

to be assigned to the same cluster with respect to two different sources. Therefore, the cosine
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Figure 6.5: Two Smallest Eigenvectors for the Example in Figure 6.2

similarity between the two vectors ~ui and ~vi quantifies how similar the clustering results of object

xi on the two sources are, and thus represents its “normal” degree. In turn, the cosine distance as

defined in Eq. (6.5) gives the “anomalous” degree of xi with respect to the two sources. The higher

the score si is, the more likely xi is a horizontal anomaly.

Example . We show how the algorithm works through the example shown in Figure 6.3. After

computing the graph Laplacian L of the combined graph’s adjacency matrix according to Eq. (6.2),

we extract the 2 smallest eigenvectors of L and put it into H, and thus H is a 14× 2 matrix. The

first seven rows correspond to the spectral embeddings of the seven objects with respect to the first

source whereas the remaining ones are those with respect to the second source. In Figure 6.5, we

plot these row vectors in a two-dimensional space where blue circles indicate the projections on the

first source and red squares are results on the second source. Clearly, no matter which source we

use, objects x1, x2 and x3 are always projected on the top region of the space, whereas x5, x6 and

x7 are located at the bottom part. The biggest difference in the projections can be found in x4,

and thus it has the highest anomalous score among the seven objects.

Random Walk . In this part, we give some intuitions of the proposed method from the

random walk perspective. Let zij be the edge weight between two nodes xi and xj in the graph.

Let di =
∑2N

j=1 zij be the degree of node xi, and vol(X) =
∑2N

i=1 di be the sum of all the edge weights
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in the graph. Suppose we define a random walk over the combined graph, where the transition

probability from node xi to node xj is proportional to the edge weight in the graph: pij = zij/di.

If the combined graph is connected and non-bipartite, then the random walk always has a unique

invariant distribution π = (π1, . . . , π2N ), where πi = di/Vol(X). Suppose xi and x′i are the two

copies of the same object in the combined graph. Now we look at the commute distance between

xi and x′i, which is the expected time it takes for the random walk to travel from xi to x′i and back.

Instead of looking for one shortest path, the commute distance looks at all the possible paths.

Therefore, only when there are many short paths from xi to x′i, their commute distance is small.

It is proven that commute distance on a graph can be computed with the help of the eigenvectors

of the graph Laplacian L as defined in Eq. (6.2). Suppose L has eigenvalues λ1, . . . , λ2N , and U

and V are two N × N matrices containing all the eigenvectors for the two copies of the objects

respectively. Let ~ui and ~vi denote the i-th row of U and V . We define ~γ as a length-2N vector

with each entry γl equal to (λl)−0.5 if λl 6= 0, and 0 otherwise. Now we divide ~γ into two length-

N vectors: ~γ = [~γu ~γv]. Suppose we map xi and x′i into a new feature space where they are

represented as ~ui · ~γu and ~vi · ~γv respectively. It can be derived that the commute distance ci

between xi and x′i is:

ci = vol(X)||~ui · ~γu − ~vi · ~γv||2,

which is the Euclidean distance between the nodes in the new feature space scaled by vol(X).

Recall that we compute the anomalous score of xi as 1 − ~ui·~vi
||~ui||·||~vi|| . We can see that both the

anomalous score and the commute distance can be represented as a distance function applied on

the spectral embeddings of the two copies of the object. The difference is: 1) The embeddings are

scaled by (λl)−0.5 in the commute distance; 2) All the eigenvectors are used in the commute distance

whereas only the k smallest are used in the anomalous score computation; and 3) Euclidean distance

is used instead of cosine distance in the commute distance.

Although the connection is loose, commute distance can be a helpful intuition to understand

the anomalous scores. If it takes longer time to commute between the two copies of object xi in

the graph, xi is more likely to be a horizontal anomaly. By the definition of commute distance, it

means that it is hard to find many paths to travel between them. In fact, in the combined graph,

the only way to travel from the left side to the right side is through the constraint edge with weight
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m. Therefore, a horizontal anomaly is the object that can be categorized into different clusters with

respect to different information sources, which is consistent with our definition. As an example, it

is hard to travel between x4 and x′4 in the graph shown in Figure 6.3 because they link to different

sets of objects in the two sources, and thus x4 is a horizontal anomaly. On the contrary, besides

the constraint edge connecting x1 and x′1, x1 can travel to x′1 through many other paths because

its neighbors in the cluster maintain the same in the two graphs. Therefore, its commute distance

is small and x1 is a normal object.

6.2.3 Multiple Sources

We can adapt Algorithm 4 to handle more than two information sources as follows. Suppose we

have similarity matrices {W (1),W (2), . . . , W (P )} as the input.

Graph Construction . The combined graph is constructed in a similar fashion as discussed

before: Duplicate the objects for P copies, in each copy retain the similarity information from

each source, and connect each pair of the nodes corresponding to the same object with an edge

weighted m. The adjacency matrix Z is thus a NP × NP matrix with {W (1),W (2), . . . , W (P )}
on the diagonal and the diagonal matrix encoding constraints M = diag(m,m, . . . ,m) on all the

off-diagonal blocks. We can make the framework more flexible by allowing for different m values

for different pairs of information sources. m is a user-provided parameter, which characterizes the

similarity between information sources in their clustering structures. Therefore, one principle to

set m is to assign a larger value to it if the two information sources are more likely to share the

same clustering results. In the experiments, to reduce the number of parameters, we use the simple

version where we set m a uniform value. However, how to set m is still a tricky problem because

m can take any value between 0 and infinity. In Section 6.3, we give some discussions on how to

transform the problem of setting m to an easier task.

Eigenvectors of Graph Laplacian . After Z is obtained, we calculate its graph Laplacian and

the k smallest eigenvectors following exactly the same procedure as in Algorithm 4. One concern is

that, when the number of information sources increases, the size of the matrix L grows quadratically

and this leads to higher computation and storage cost. However, the graph Laplacian of Z is a

matrix with special structures where most entries are 0, and also, we only need the k smallest
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eigenvectors instead of the full eigenspace. Therefore, this problem is much easier than the general

eigen-decomposition problem on any matrix. In fact, efficient packages such as ARPACK [111],

have been developed to compute a few eigenvectors of large-scale sparse matrix. In Section 6.3, we

show that the proposed method implemented based on ARPACK can scale well even when there are

more than two information sources. Furthermore, we can use some parallel computing frameworks

to process large matrices. For example, large scale top k eigensolver is available [97] using highly

scalable MapReduce framework1. Another practical issue is how to choose the appropriate k, i.e.,

the number of eigenvectors we extract from the combined matrix. Choosing k is a general problem

for all clustering algorithms, and a variety of methods have been developed. In particular, eigengap

heuristic is proposed to choose k such that the first to the k-th eigenvalues are very small, but the

(k + 1)-th is relatively large. This heuristic works for spectral clustering methods as justified by

spectral theory and perturbation theory. A brief discussion about these methods can be found in

[125]. In Section 6.3, we show how the performance of the proposed method varies with respect to

the value of k.

Anomalous Score Computation . The anomalous score is defined based on the distance

between two vectors in Eq. (6.5). With P information sources (P > 2), we should calculate

the anomalous degree of an object xi based on the following P vectors: {~hi,~hi+N ,~hi+2N , . . . ,

~hi+(P−1)N}. There are various ways to define a distance measure among multiple vectors. In the

experiment, we simply use the average pairwise distance as the measure:

si =
1

P (P − 1)

P−1∑

a=0

P−1∑

b=0

1a6=b ·
[
1−

~hi+aN · ~hi+bN

||~hi+aN || · ||~hi+bN ||

]

Similarity Computation . We need similarity matrices derived from multiple sources as input

to the algorithm. The notion of “similarity” between objects varies with the types of information

sources. In real practice, the set of objects can be represented in different incompatible formats

by the available information sources. For example, webpages on the internet can be represented

as bag of words feature vectors (webpage contents), or a huge graph (hyperlink relationships). We

discuss how to compute the similarity matrix W for different data types as follows: 1) Graph:

wij = 1 if there exists an edge connecting xi and xj and 0 otherwise. 2) Continuous Data: We

1http://mahout.apache.org/
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can use a Gaussian kernel applied on Euclidean distance: wij = exp(−||xi − xj ||2/σ2) where σ2 is

the parameter used in the kernel. 3) Binary Data: We can use Jaccard Index to compute the

similarity: wij = |xi ∩ xj |/|xi ∪ xj |. 4) Documents: Each document xi is usually represented

as a bag-of-words vector. The cosine similarity between two documents xi and xj is defined as:

wij = (xi · xj)/(||xi|| · ||xj ||). Note that these are simply some examples showing how the pairwise

similarity can be computed. More discussions on the similarity computation can be found in [82].

6.3 Experiments

We evaluate the HOAD algorithm on synthetic data to show its detection accuracy, as well as real

datasets including DBLP and MovieLens to validate its ability of identifying meaningful horizontal

anomalies.

6.3.1 Synthetic Data

The concept of “horizontal anomaly” is new, and thus there are no benchmark datasets for it.

Therefore, we propose a method to convert a classification problem into a horizontal anomaly

detection problem, and then apply this procedure on several UCI machine learning data sets.

Data Generation . Recall that horizontal anomalies represent the objects that have inconsis-

tent behavior among multiple information sources. Therefore, the basic idea of the transformation

is to simulate “inconsistencies” by swapping feature values of objects from different classes. Sup-

pose we have a training set from a classification problem where each object consists of feature values

and a class label. Suppose there are N objects in the training set: {x1, . . . , xN}, and the features

X can be partitioned into two views. We assume that each of the feature sets is correlated with

the class label, and thus objects within the same class share similar feature values in each feature

set. Therefore, for two objects xi and xj from different classes, if their feature values are swapped

in one view but remain unchanged in the other, they have “inconsistent” behavior among these

two views, and thus represent horizontal anomalies. In this way, we generate r pairs of horizontal

anomalies. The datasets we use all have continuous values, and thus we use Gaussian kernels to

calculate the similarity. We apply the above method on four data sets obtained from UCI machine
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learning repository2: Zoo, Iris, Letter and Waveform. On each data set, we randomly split the

feature set into two subsets with equal number of features. We repeat the transformation procedure

50 times and at each time, we generate a data set with around 10% anomalies. We evaluate the

HOAD algorithm on the 50 data sets and report the average accuracy.

Evaluation Measure and Baseline Methods. For anomaly detection problems, one of the

most widely used evaluation approaches is ROC analysis, which represents the trade-off between

detection rate and false alarm rate. A good algorithm would produce an ROC curve as close to

the left-top corner as possible, and thus the area under ROC curve (AUC), which is in the range

[0,1], is a good evaluation metric. The higher the AUC is, the better the algorithm performs. We

show the performance of the proposed HOAD algorithm with various parameter settings. The

two most important parameters are the penalty value m and the number of eigenvectors k. Note

that the proposed algorithm conducts a constrained soft clustering on multiple information sources

simultaneously. Instead of conducting a joint clustering, the baseline method clusters the two

sources separately and calculates the anomalous scores based on the difference between the two

clustering solutions. Specifically, in two-source problems, we conduct eigen decomposition on the

graph Laplacian matrices of the two similarity matrices A and W separately. Suppose the top k

eigen representation of object xi are ui and vi respectively, then we use Eq. (6.5) to compute the

anomalous score of xi for the baseline approach. Note that the major difference between the HOAD

algorithm and the baseline method is on how to compute ui and vi.

Performance. The experimental results on the four data sets are shown in Figure 6.6(a) to

Figure 6.6(d) where we vary the values of the parameters m and k. m indicates the penalty we

enforce when the two clustering solutions do not agree, and k is the number of top eigenvectors.

The baseline clusters the two sources separately, so neither m nor k is used in the baseline and

its performance remains mostly stable except slight fluctuation due to random sampling in data

generation. From the experimental results, we can see that HOAD algorithm generally outperforms

the baseline, especially when k is small (e.g., k = 3). However, when the value of m is higher,

the difference in AUC between the algorithms using different k is much smaller. Therefore, we

focus on how to select the appropriate m in the following discussion. On these UCI datasets, when
2http://archive.ics.uci.edu/ml
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Figure 6.6: Anomaly Detection Performance on UCI Data

m increases, the proposed algorithm has a higher AUC. In the simulated study, the two feature

sets are two disjoint subsets of the original features, and usually using all of the features lead to

a better classification model. Hence the two views are correlated and using a large m captures

this correlation well. However, this does not mean that we should assign a big number to m in

all cases because this pattern may not always hold in real horizontal anomaly detection tasks. In

the following experiments on DBLP data sets, we illustrate the relationship between m and the

anomalous scores, and state some principles in setting m.

In Figure 6.7, we show the running time of HOAD algorithm with respect to 1000 to 6000

objects represented in two, three or four information sources. We conduct the experiments on

synthetic data sets where we randomly generate similarity matrices for 50 trials, and report the

average running time. The eigenvectors are computed using Matlab eigs function, which is based

on ARPACK package. As can be seen, the HOAD algorithm can scale well to large data sets when
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Figure 6.7: Running Time of HOAD Algorithm

the number of objects and number of sources both increase.

6.3.2 Real Case Studies

We discuss the issues of setting parameters on DBLP data and present illustrative results on

MovieLens data.

DBLP . DBLP3 provides bibliographic information on major computer science journals and

proceedings. We define two horizontal anomaly detection tasks based on the DBLP data where the

objects are a set of conferences and authors respectively. Let N = 4220, and the set of conferences

is represented as {x1, x2, . . . , xN}. There are two views describing the conferences: the keywords

in the conferences and the authors who published in the conferences. Specifically, each xi has two

vectors, each of which has the form (xi1, xi2, . . . , xiT ). In the first vector, T is the total number

of words, and xil is the number of times the l-th word appeared in the i-th conference profile (we

concatenate the titles of papers in the conference as the conference profile). In the second vector,

T is the total number of authors in the second vector, and xil denotes the number of times the l-th

author published in the i-th conference. The pairwise similarity between two conferences xi and xj

is defined as the cosine similarity between the corresponding vectors. Therefore, the conferences

that share lots of keywords, or share lots of authors are similar. Similarly, we select a set of
3http://www.informatik.uni-trier.de/∼ley/db/
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Figure 6.8: Parameter Study on Conferences
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Figure 6.9: Parameter Study on Authors

3116 authors from data mining related areas and extract two types of information from DBLP: the

publications and the co-authorships. Each author xi is also represented in vectors (xi1, xi2, . . . , xiT )

where in the first vector xil denotes the occurrence of the l-th word in the authors’ publications, and

xil corresponds to the number of times xi and xl collaborate in the second one. Cosine similarity

is used, and similar authors will share co-authors, or keywords in their publications.

We study the effect of m on the anomalous scores. For each m, we apply the HOAD algorithm

to the data sets, and compute the mean and standard deviation of the objects’ anomalous scores.

The results on conferences and authors are shown in Figure 6.8 and Figure 6.9 where the points

on the line are the average anomalous scores and the error bar denotes the standard deviation.

Obviously, the average anomalous score decreases as m increases. Recall that the anomalous scores

indicate the degree of differences between the spectral embeddings derived from the two similarity

matrices. When we give a heavy penalty on different embeddings by the two sources, we basically

bias the two projections towards the ones that agree the most. Therefore, when m is larger, the

spectral embeddings from the two sources are more likely to be the same, and thus the difference

between them is smaller. On the contrary, when m is small, the constraint on the similarities

between the two projections is often violated, so most of the objects are projected differently.

Another observation is that the variance among the anomalous scores goes up first and then

goes down as m increases. When m is quite large or quite small, the two projections of all the

objects would be very similar or very different, and thus the objects receive similar anomalous
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scores. There exist a large variability among the anomalous scores only when m is in the middle

of the spectrum. Although m can be drawn from (0,∞), the average anomalous scores are within

a fixed range–[0,1]. Usually, the two projections are positively correlated, and thus their cosine

similarity is between 0 and 1. Therefore, we can choose m which leads to an average anomalous

score around 0.5 because the variance of the anomalous scores usually reaches the highest point

here and this helps us identify the horizontal anomalies.

MovieLens. We use the Movielens dataset4 with movies as objects and three sources of

information to capture their relationships: 1) Genre Information: Individual movies are classified

as being of one or more of 18 genres, such as Comedy and Thriller, which can be treated as binary

vectors. 2) User Viewing Information: Individual movies have a list of users that watched the

movie. This may also be represented as a vector (per movie) across all users. 3) User Tagging

Information: Individual movies are tagged by different users. Looking across all users, we can

determine a vector per movie. In all three cases, we compute the pairwise similarity using cosine

similarity across the vectors. The data set contains 10 million ratings and 100,000 tags for 10681

movies by 71567 users. We choose a set of 7595 movies, each of which has both ratings and tags.

We then have three similarity matrices, corresponding to these three different sources for all these

movies, and use our techniques to identify horizontal anomalies. To evaluate the performance of

the HOAD algorithm on MovieLens dataset, we label some movies as “horizontal anomalies” based

on the list of weirdest movies5. There are 572 movies listed as weirdest movies and among them

127 are found in the MovieLens dataset. These 127 movies are labeled as “anomalous” and the

remaining 7468 movies are “normal”. Based on these labels, we calculate the area under ROC

curve (AUC) of both HOAD and the baseline method based on their computed anomalies scores

for the 7595 movies. HOAD algorithm achieves a better AUC (0.4879) compared with that of

the baseline method (0.4423). This demonstrates the ability of the proposed HOAD algorithm in

detecting inconsistent movies across various information sources.

Moreover, we present the anomalous scores for the 20 most popular movies6 as shown in Table

6.1. As may be seen, the movies “One Flew Over the Cuckoo’s Nest” and “Pulp Fiction” are
4http://www.grouplens.org/node/73
5http://366weirdmovies.com/the-weird-movie-list
6As listed on http://www.imdb.com/chart/top on November 2010.
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Table 6.1: Anomalous Scores of 20 Popular Movies from MovieLens
Movie Score Movie Score

One Flew Over the Cuckoo’s Nest 0.8079 Seven Samurai 0.6404
Pulp Fiction 0.7713 Fight Club 0.6364
Casablanca 0.7205 City of God 0.6278

The Shawshank Redemption 0.6949 The Lord of the Rings: The Return of the King 0.3512
The Godfather: Part II 0.6822 The Lord of the Rings: The Fellowship of the Ring 0.3478

The Godfather 0.6770 The Good, the Bad and the Ugly 0.3194
Goodfellas 0.6768 Raiders of the Lost Ark 0.3181

Schindler’s List 0.6755 Rear Window 0.3095
12 Angry Men 0.6713 Star Wars 0.2982

The Dark Knight 0.6535 Star Wars: Episode V-The Empire Strikes Back 0.2562

identified as horizontal anomalies, as they tend to show strong disagreement between the genre

classification, and the sets of users that watched and tagged them. Intuitively, this is expected

as these two movies do not really fit into one classification or user category. Borrowing reviews

from Wikipedia7, “Pulp Fiction” is known for its rich, eclectic dialogue, ironic mix of humor and

violence, and nonlinear storyline, which make it different and anomalous among movies. For “One

Flew Over the Cuckoo’s Nest”, the review says “it is a comedy that can’t quite support its tragic

conclusion”. These tell us the reasons why these two movies are detected as being inconsistent.

On the other hand, “Star Wars” receives the lowest anomalous score as it attracts a particular set

of audiences.

6.4 Related Work

Spectral clustering [125] is an effective clustering technique that has shown its advantages in many

real-world applications. Some constrained spectral clustering algorithms [119, 166] have been pro-

posed to incorporate pairwise must-link and cannot-link constraints. Different from our study,

these algorithms take one information source and pairwise constraints on some of the objects as

input. Consensus clustering [155, 54, 138] or multi-view clustering [21, 183, 121, 33] approaches

try to compute a globally optimal clustering solution from multiple clustering solutions or multiple

views. Usually the final solution represents the consensus among multiple clusterings. Although

the proposed HOAD algorithm has a spectral clustering interpretation, our goal is to identify the

disagreement between sources rather than reach a consensus among them. Spectral methods have

been used in detecting online changes in time-dependent networks [85] or single-source anomalies
7http://en.wikipedia.org
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[100], but these methods cannot be used to detect multi-source inconsistencies. The work in [90]

compares two graphs to detect anomalies where an adaptive neighborhood selection procedure

based on sparse graphical Gaussian model is proposed. However, they focus on finding correlation

anomalies among attributes instead of objects.

6.5 Summary

We propose to detect horizontal anomalies, or objects that have inconsistent behavior among

multiple sources. Intuitively, they belong to different clusters when considering many aspects from

multiple information sources. Potential applications of the proposed approach are in cyber-security,

social networking and internet of things. The proposed algorithm has two intrinsic steps. In the

first step, we construct a combined similarity graph based on the input similarity matrices and

compute the k smallest eigenvectors of the graph Laplacian as spectral embeddings of the objects.

After that, we calculate the anomalous score of each object as the cosine distance between different

spectral embeddings. The physical meaning of the proposed algorithm is explained from both

constrained spectral clustering and random walk point of view. Experimental results show that the

proposed HOAD algorithm can consistently find horizontal anomalies from DBLP and MovieLens

datasets, where other anomaly detection methods fail to identify.
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Chapter 7

Inconsistency Detection for
Information Networks

As shown in Chapter 6, we can benefit from inconsistency detection across sources when unusual

behavior is detected by comparing different sources. Although the proposed framework can be

applied to a variety of applications, there are some specific learning scenarios that require more

focused solutions. In this chapter and the following chapter, we present our study of inconsistency

detection on two specific cases with multiple heterogeneous sources.

In this chapter, we consider a network where each node denotes an object and each link rep-

resents connections between two objects. We call such networks as information networks. Closely

related objects that share the same properties or interests form a community in the network. By

comparing node and link information, we can identify outliers (anomalies) within the context of

communities such that the identified outliers deviate significantly from the rest of the community

members. To automatically detect such outliers, we propose an probabilistic model, which formu-

lates networked data as a mixture model composed of multiple normal communities and randomly

generated outliers, characterizing both data and links simultaneously [69]. The model parameters

and outliers are inferred by maximizing the posterior probability. This algorithm can be applied to

a variety of networked systems, such as biological networks, social networks and traffic networks.

7.1 Overview

The problem of anomaly detection has been widely studied [31] in the scenario of one data source,

where anomalies are defined as the objects that have deviant behavior compared with majority

of the data. In many scenarios, however, an object may only be considered abnormal in a spe-

cific context but not globally [153, 165]. Such contextual outliers are sometimes more interesting

and important than global outliers. For example, 20 Fahrenheit degree is not a global outlier in
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temperature, but it represents anomalous weather in the spring of New York City.

We study the problem of finding contextual outliers in an “information network”. Networks have

been used to describe numerous physical systems in our everyday life, including Internet composed

of gigantic networks of webpages, friendship networks obtained from social web sites, and co-author

networks drawn from bibliographic data. We regard each node in a network as an object, and there

usually exist large amounts of information describing each object, e.g. the hypertext document

of each webpage, the profile of each user, and the publications of each researcher. The most

important and interesting aspect of these datasets is the presence of links or relationships among

objects, which is different from the feature vector data type that we are more familiar with. We

refer to the networks having information from both objects and links as information networks.

Intuitively, objects connected via the network have many interactions, subsequently share mutual

interests, and thus form a variety of communities in the network [76]. For example, in a blogsphere,

there could be financial, literature, and technology cliches. Taking communities as contexts, we

aim at detecting outliers that have non-conforming patterns compared with other members in the

same community.

Example: Low-income person with rich friends

A friend network is shown in Figure 7.1(a), where each node denotes a person, and a link represents

the friend relationship between two persons. Each person’s annual salary is shown as a number

attached to each node. There obviously exist two communities, high-income (v1,v2,v3,v4,v5) and

low-income (v7,v8,v9,v10). Interestingly, v6 is an example of community outliers. It is only linked

to the high-income community (70 to 160K), but has a relatively low income (40K). This person

could be a rising star in the social network, for example, a young and promising entrepreneur, or

someone who may settle down in a rich neighborhood. Another example is a co-author network.

Researchers are linked through co-authorship, and texts are extracted from publications for each

author in bibliographic databases. A researcher who does independent research on a rare topic is

an outlier among people in his research community, for example, a linguistic researcher in the area

of data mining. Additionally, an actor cooperation network can be drawn from movie databases

where actors are connected if they co-star a movie. Exceptions can be found when an actor’s profile

122



V6
V5

V4

110K

40K

100K
Community

Outlier

High-income Community Low-income Community

V2

160KV170K

V8

30K V7 10K

V3140K
V9

10K

V10

30K

(a) Community Outliers–CODA

V7

10

V9

V8

30

V10

40 70 100 110 140 160

V6 V1 V4 V5 V3 V2

Global Outlier

Salary (in $1000)

(b) Global Outliers–GLODA

V6
V5

V4

110K
40K

100K

Local

Outlier

V2

160KV170K

V8

30K V7 10K

V9

10K

V10

30K

V3140K

CNA

Boundary

(c) Local Outliers-DNODA

Figure 7.1: Comparison of Different Types of Outliers

deviates much from his co-star communities, such as a comedy actor co-starring with lots of action

movie stars.

Limitation of Traditional Approaches

Identifying community outliers is a non-trivial task. First, if we conduct outlier detection only based

on each object’s information, without taking network structure into account, the identified outliers

would only be “global” outliers. As shown in Figure 7.1(b), v1 is a global outlier with 70K deviating

from the other salary amounts in the “low-income person with rich friends” example. We call this

method GLobal Outlier Detection Algorithm (GLODA). Secondly, when only “local” information
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(i.e., information from neighboring nodes) is considered, the identified node is just significantly

away from its adjacent neighbors. It is a “local” outlier, not necessarily a “community” outlier.

As illustrated in Figure 7.1(c), v9 is a local outlier because his salary is quite different from those

of his direct friends (v2, v4 and v10). The corresponding algorithm is denoted as Direct Neighbor

Outlier Detection Algorithm (DNODA).

In detecting community outliers, both the information at each individual object and the one

in the network should be taken into account simultaneously. A naive solution is to first partition

the network into several communities using network information [149, 99], and then within each

community, identify outliers based on the object information. This two-stage algorithm is referred

to as Community Neighbor Algorithm (CNA). The problem with such a two-stage approach is

that communities discovered using merely network information may not make much sense. For

example, partitioning the graph in Figure 7.1(c) along the dotted line minimizes the number of

normalized cuts, and thus the line represents the boundary between two communities identified by

CNA. However, the resulting two communities have wide-spread income levels, and thus it does

not make much sense to detect outliers in such two communities.

Therefore, we propose to utilize both the network and data information in an integrated solution,

in order to improve community discovery and find more meaningful outliers. The algorithm we

developed is called community outlier detection algorithm (CODA). With the proposed method,

the network in Figure 7.1(a) will be divided by the dashed line, and v6 is detected as the community

outlier. In many applications, no matter the network is dense or sparse, there is ambiguity in

community partitions. This is particularly true for very large networks, since information from

both nodes and links can be noisy and incomplete. Consolidating information from both sources

can compensate missing or incomplete information from one side alone and is likely to yield a better

solution.

Some clustering methods (CLA for short) have been developed to group nodes in an infor-

mation network into communities using both data and link information [114, 175, 167]. Those

methods, however, are not designed for outlier detection. The reason is that they are proposed

under the assumption that there are no outliers. It is well-known that outliers can highly affect the

formation of communities. Different from those methods, the proposed approach combines, instead
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Table 7.1: Summary of Related Work
Algorithms Tasks Information Sources
GLODA global outlier detection data of objects
DNODA local outlier detection data and direct neighbors

find communities use data and links
CNA then detect outliers separately

clustering in use data and links
CLA information networks together

of separating, outlier detection and community mining into a unified framework. As summarized

in Table 7.1, both GLODA and DNODA only use part of the available information, whereas the

other two approaches consider both data and links. However, CNA utilizes the two information

sources separately, and CLA is used to conduct clustering, instead of outlier detection.

Summary of the Proposed Approach

We propose a probabilistic model for community outlier detection in information networks. It

provides a unified framework for outlier detection and community discovery, integrating information

from both the objects and the network. The information collected at each object is formulated as a

multivariate data point, generated by a mixture model. We use K components to describe normal

community behavior and one component for outliers. Distributions for community components

are, but not limited to, either Gaussian (continuous data) or multinomial (text data), whereas the

outlier component is drawn from a uniform distribution. The mixture model induces a hidden

variable zi at each object node, which indicates its community. Then inference on zi’s becomes

the key in detecting community outliers. We regard the network information as a graph describing

the dependency relationships among objects. The links from the network (i.e., the graph) are

incorporated into our modeling via a hidden Markov random field (HMRF) on the hidden variable

zi’s. We motivate an objective function from the posterior energy of the HMRF model, and find its

local minimum by using an Iterated Conditional Modes (ICM) algorithm. We also provide some

methods for setting the hyper-parameters in the model. Moreover, the proposed model can be

easily generalized to handle a variety of data as long as a distance function is defined.

A summary of our contributions is as follows:

• Finding community outliers is an important problem but has not received enough attention
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Table 7.2: Important Notations

Symbol Definition
I = {1, . . . , i, . . . , M} the indices of objects

V = {v1, . . . , vM} the set of objects
S = {s1, . . . , sM} the given attribute values of the objects

WM×M = [wij ] the given link structure, wij-the link strength between objects vi and vj

Z = {z1, . . . , zM} the set of random variables for hidden labels of the objects
X = {x1, . . . , xM} the set of random variables for observed data

Ni (i ∈ I) the neighborhood of object vi

1, . . . , k, . . . , K the indices of normal communities
Θ = {θ1, . . . , θK} the set of random variables for model parameters

θk = {µk, σ2
k} the parameters of the k-th normal community (continuous data): µk-mean, σ2

k-variance
θk = {βk1, βk2, . . . , βkT } the parameters of the k-th normal community (text data)

βkl (l = 1, . . . , T ) the probability of observing the l-th word in the k-th community (text data)

in the field of information network analysis. To the best of our knowledge, this is the first

work on identifying community outliers by analyzing both the data and links simultaneously.

• We propose an integrated probabilistic model to interpret normal objects and outliers, where

the object information is described by some generative mixture model, and network informa-

tion is encoded as spatial constraints on the hidden variables via a HMRF model.

• Efficient algorithms based on EM and ICM algorithms are provided to fit the HMRF model

as well as inferring the hidden label of each object.

• We validate the proposed algorithm on both synthetic and real data sets, and the results

demonstrate the advantages of the proposed approach in finding community outliers.

7.2 Community Outlier Detection

Community outliers can be defined in various ways. We define it based on a generative model

unifying data and links. Based on the definition, we discuss the specific models for continuous data

and text data. Table 7.2 summarizes some important notations.

7.2.1 Outlier Detection via HMRF

The problem is defined as follows: suppose we have an information network denoted as a graph

G = (V, W ), where V denotes a set of objects {v1, . . . , vM}, and W represents the links between

each pair of objects. Specifically, the input include:
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• S = {s1, . . . , sM} where si is the data associated with object vi.

• W is the symmetric M × M adjacency matrix of the network where wij (wij ≥ 0) is the

weight of the link between the two objects vi and vj . If wij > 0, vi and vj are connected.

Let I = {1, . . . ,M} be the set of indices of the M objects. The objective is to derive the anomalous

subset {i : vi is a contextual outlier with respect to S and W , i ∈ I}.
Next, we discuss how to formulate this using HMRF model. Mathematically, a HMRF model

is characterized by the following:

Observed data

X = {x1, . . . , xM} is a set of random variables. Each random variable xi generates the data si

associated with the i-th object.

Hidden labels

Z = {z1, . . . , zM} is the set of hidden random variables, whose values are unobservable. Each

variable zi indicates the community assignment of vi. Suppose there are K communities, then

zi ∈ {0, 1, . . . , K}. If zi = 0, vi is an outlier. If zi = k (k 6= 0), vi belongs to the k-th community.

Neighborhood system

The links in W induce dependency relationships among the hidden labels, with the rationale

that if two objects vi and vj are linked on the network (i.e., they are neighbors), then they are more

likely to belong to the same community (i.e., zi and zj are likely to have the same value). However,

since outliers are randomly generated, the neighbors of an outlier are not necessarily outliers. So

we adjust the neighborhood system as the following:

Ni =




{j; wij > 0, i 6= j, zj 6= 0}zi 6= 0

φ zi = 0.

Here Ni stands for the set of neighbors of object vi. When zi 6= 0, i.e., vi is not an outlier, the

neighborhood of vi contains its normal neighbors in G. In contrast, vi’s neighborhood is empty if
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it is an outlier (zi = 0).

Conditional independence

The set of random variables X are conditionally independent given their labels:

P (X = S|Z) =
M∏

i=1

P (xi = si|zi).

Normal Communities and Outliers

We assume that the k-th normal community (k 6= 0) is characterized by a set of parameters θk,

i.e.,

P (xi = si|zi = k) = P (xi = si|θk).

Quite differently, the outliers follow a uniform distribution, i.e.,

P (xi = si|zi = 0) = ρ0

where ρ0 is a constant. Let Θ = {θ1, . . . , θK} be the set of all parameters describing the normal

communities.

Dependency between hidden variables

The random field defined over the hidden variables Z is a Markov random field, where the

Markov property is satisfied:

P (zi|zI−{i}) = P (zi|zNi) zi 6= 0.

It indicates that the probability distribution of zi depends only on the labels of vi’s neighbors in G

if zi corresponds to a normal community. If zi = 0, vi is an outlier and is not linked to any other

objects in the random field, and thus we set P (zi = 0) = π0 where π0 is a constant. According

to the Hammerskey-Clifford theorem [17], an MRF can equivalently be characterized by a Gibbs

distribution:

P (Z) =
1

H1
exp(−U(Z)) (7.1)
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Figure 7.2: Community Outlier Detection Model

where H1 is a normalizing constant, and U(Z) =
∑

c∈C Vc(Z), the potential function, is a sum

of clique potentials Vc(Z) over all possible cliques (c ∈ C) in G. Since outliers are stand-alone

objects (their links in G are ignored in the model), we define the potential function only on the

neighborhood of normal objects:

U(Z) = −λ
∑

wij>0,zi 6=0,zj 6=0

wijδ(zi − zj) (7.2)

where λ is a constant, wij > 0 denotes that there is a link connecting the two objects vi and vj , and

both zi and zj are non-zero. The δ function is defined as δ(x) = 1 if x = 0 and δ(x) = 0 otherwise.

The potential function suggests that, if vi and vj are normal objects, they are more likely to be in

the same community when there exists a link connecting them in G, and the probability becomes

higher if their link wij is stronger.

Figure 7.2 shows the HMRF model for the example in Figure 7.1(a). The top layer represents

the hidden variables {z1, . . . , z10}. It has the same topology as the original network G except that

the neighborhood of z6 is now empty because it is an outlier. Given zi = k, the corresponding

data value is generated according to the parameter θk. The bottom layer is composed of the data

values (salaries) of the objects. In this example, two communities are formed, and objects in the

same community are strongly linked in the top layer, as well as having similar values in the bottom
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layer. When considering both data and link information, we cannot assign v6 to any community

(linked to community 1 but its value is closer to community 2), and thus regard it as a community

outlier.

7.2.2 Modeling Continuous and Text Data

In the proposed model, the probability of hidden variables is modeled by Eq. (7.1) and Eq. (7.2),

and the outliers are generated by a uniform distribution. However, given the hidden variable zi 6= 0,

the probability distribution of xi can be modeled in various ways depending on the format it is

taking. In this part, we discuss how P (xi = si|zi) (zi 6= 0) is modeled when si is continuous or a

text document, the two major types of data we encounter in applications. Extensions to general

cases are discussed in Section 7.4.

Continuous Data

For the sake of simplicity, we assume that the data S are 1-dimensional real numbers. Exten-

sions to model multi-dimensional continuous data are straightforward. We propose to model the

normal points in S by a Gaussian mixture due to its flexibility in approximating a wide range of

continuous distributions. Parameters needed to describe the k-th community are the mean µk and

variance σ2
k: θk = {µk, σ

2
k}. Given the model parameter Θ = (θ1, . . . , θK), if zi = k ∈ {1, . . . , K},

the logarithm of the conditional likelihood lnP (xi = si|zi = k) is:

ln P (xi = si|zi = k) = −(si − µk)2

2σ2
k

− lnσk − ln
√

2π. (7.3)

Text Data

Suppose each object vi is a document that is comprised of a bag of words. Let {w1, w2, . . . , wT }
be all the words in the vocabulary, and each document is represented by a vector si = (di1, di2, . . . , diT ),

where dil denotes the count of word wl in vi. Now the parameter characterizing each normal com-

munity is θk = {βk1, βk2, . . . , βkT } where βkl = P (wl|zi = k) is the probability of seeing word wl in

the k-th community. Given that a document vi is in the k-th community, its word counts si follow
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a multinomial distribution, and thus lnP (xi = si|zi = k) is defined as:

ln P (xi = si|zi = k) =
T∑

l=1

dil lnP (wl|zi = k) =
T∑

l=1

dil ln βkl. (7.4)

7.3 Fitting Community Outlier Detection Model

In the HMRF model for outlier detection we discussed in Section 7.2, both the model parameters

Θ and the set of hidden labels Z are unknown. In this section, we present the method to infer the

values of hidden variables (Section 7.3.1) and estimate model parameters (Section 7.3.2).

7.3.1 Inference

We first assume that the model parameters in Θ are known, and discuss how to obtain an assignment

of the hidden variables. The objective is to find the configuration that maximizes the posterior

distribution given Θ. We then discuss how to estimate Θ and Z simultaneously in Section 7.3.2.

In general, we seek a labeling of the objects, Z = {z1, . . . , zM}, to maximize the posterior

probability (MAP):

Ẑ = arg max
Z

P (X = S|Z)P (Z).

We use the Iterated Conditional Modes (ICM) algorithm [18] to solve this MAP estimation problem.

It adopts a greedy strategy by calculating local minimization iteratively and the convergence is

guaranteed after a few iterations. The basic idea is to sequentially update the label of each object,

keeping the labels of the other objects fixed. At each step, the algorithm updates zi given xi = si

and the other labels by maximizing P (zi|xi = si, zI−{i}), the conditional posterior probability. Next

we discuss the two scenarios separately when zi takes non-zero or zero values.

If zi 6= 0, we have

P (zi|xi = si, zI−{i}) ∝ P (xi = si|Z)P (Z).

As discussed in Eq. (7.1) and Eq. (7.2), the probability distribution of Z is given by

P (Z) ∝ exp
(
λ

∑

wij>0,zi 6=0,zj 6=0

wijδ(zi − zj)
)
.
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In P (zi|xi = si, zI−{i}), the links that involve objects other than vi are irrelevant, and thus

P (zi|xi = si, zI−{i}) ∝ P (xi = si|zi) · exp
(
λ

∑

j∈Ni

wijδ(zi − zj)
)

where only the links between vi and its neighbors in Ni are taken into account. We take logarithm

of the posterior probability, and then transform the MAP estimation problem to the minimization

of the conditional posterior energy function:

Ui(k) = − lnP (xi = si|zi = k)− λ
∑

j∈Ni

wijδ(k − zj).

If zi = 0, vi has no neighbors, and thus

P (zi|xi = si, zI−{i}) ∝ P (xi = si|zi = 0)P (zi = 0) = exp(−Ui(0)) (7.5)

with

Ui(0) = − ln(ρ0π0) = a0.

Therefore, to find zi that maximizes P (zi|xi = si, zI−{i}), it is equivalent to minimizing the

posterior energy function: ẑi = arg mink Ui(k) where

Ui(k) =




− ln P (xi = si|zi = k)− λ

∑
j∈Ni

wijδ(k − zj)k 6= 0

a0 k = 0
(7.6)

As can be seen, λ is a predefined hyper-parameter that represents the importance of the network

structure. lnP (xi = si|zi = k) is defined in Eq. (7.3) and Eq. (7.4) for continuous and text data re-

spectively. To minimize Ui(k), we first select a normal cluster k∗ such that k∗ = arg mink Ui(k)(k 6=
0). Then we compare Ui(k∗) with Ui(0), which is a predefined threshold a0. If Ui(k∗) > a0, we

set ẑi = 0, otherwise ẑi = k∗. As shown in Algorithm 5, we first initialize the label assignment for

all the objects, and then repeat the update procedure until convergence. At each run, the labels

are updated sequentially by minimizing Ui(k), which is the posterior energy given xi = si and the

labels of the remaining objects.
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Algorithm 5 Updating Labels
Input: set of data S, adjacency matrix W , set of model parameters Θ, number of clusters K, link importance λ,
threshold a0, initial assignment of labels Z(1);
Output: updated assignment of labels Z;
Algorithm:

Randomly set Z(0)

t ← 1
while Z(t) is not close enough to Z(t−1) do

t ← t + 1
for i = 1;i <= M ;i + + do

update z
(t)
i = k which minimizes Ui(k) in Eq. (7.6).

end for
end while
return Z(t)

7.3.2 Parameter Estimation

In Section 7.3.1, we assume that Θ is known, which is usually unrealistic. In this part, we consider

the problem of estimating unknown Θ from the data. Θ describes the model that generates S, and

thus we seek to maximize the data likelihood P (X = S|Θ) to obtain Θ̂. However, because both

the hidden labels and the parameters are unknown and they are inter-dependent, it is intractable

to directly maximize the data likelihood. We view it as an “incomplete-data” problem, and use

the expectation-maximization (EM) algorithm to solve it.

The basic idea is as follows. We start with an initial estimate Θ(0), then at E-step, calculate

the conditional expectation Q(Θ|Θ(t)) =
∑

Z P (Z|X, Θ(t)) ln P (X,Z|Θ), and at M-step, maximize

Q(Θ|Θ(t)) to get Θ(t+1) and repeat. In the HMRF outlier detection model, we can factorize

P (X, Z|Θ) as P (X|Z, Θ)P (Z), and since P (Z) is not related to Θ, we can regard the corresponding

terms as a constant in Q. Similarly, the outlier component does not contribute to estimation of

Θ neither, and thus
∑n

i=1 P (zi = 0|xi = si) ln P (xi = si|zi = 0) can also be absorbed into the

constant term H2:

Q =
M∑

i=1

(
K∑

k=1

P (zi = k|xi = si,Θ(t)) ln P (xi = si|zi = k, Θ)

)
+ H2. (7.7)

We approximate P (zi = k|xi = si,Θ(t)) using the estimates obtained from Algorithm 5, where

P (zi = k∗|xi = si, Θ(t)) = 1 if k∗ = arg mink Ui(k), and 0 otherwise.

Specifically, for continuous data, we maximize Q to get the mean and variance of each normal
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Algorithm 6 Community Outlier Detection
Input: set of data S, adjacency matrix W , number of clusters K, link importance λ, threshold a0;
Output: set of outliers;
Algorithm:

Initialize Z0,Z1 randomly
t ← 1
while Z(t) is not close enough to Z(t−1) do

M-step: Given Z(t), update the model parameters Θ(t+1) according to Eq. (7.8) and Eq. (7.9) (continuous
data), or Eq. (7.10) (text data).
E-step: Given Θ(t+1), update the hidden labels as Z(t+1) using Algorithm 5.
t ← t + 1

end while
return the indices of outliers: {i : z

(t)
i = 0, i ∈ I}

community k ∈ {1, . . . , K}, where lnP (xi = si|zi = k, Θ) is defined in Eq. (7.3):

µ
(t+1)
k =

∑M
i=1 P (zi = k|xi = si,Θ(t))si∑M
i=1 P (zi = k|xi = si, Θ(t))

, (7.8)

(σ(t+1)
k )2 =

∑M
i=1 P (zi = k|xi = si, Θ(t))(si − µk)2∑M

i=1 P (zi = k|xi = si,Θ(t))
. (7.9)

Similarly, for text data, based on Eq. (7.4), as well as the constraints that
∑T

l=1 βkl = 1

(k = 1, . . . , K), we have:

β
(t+1)
kl =

∑M
i=1 P (zi = k|xi = si, Θ(t))dil∑T

l=1

∑M
i=1 P (zi = k|xi = si, Θ(t))dil

(7.10)

for k = 1, . . . , K and l = 1, . . . , T .

In summary, the community outlier detection algorithm works as follows. As shown in Algo-

rithm 6, we begin with some initial label assignment of the objects. In the M-step, the model

parameters are estimated by maximizing the Q function based on the current label assignment. In

the E-step, we run Algorithm 5 to re-assign the labels to the objects by minimizing Ui(k) for each

node vi sequentially. The E-step and M-step are repeated until convergence is achieved, and thus

the outliers are the nodes that have 0 as the estimated labels. Note that the running time is linear

in the number of edges. It is not worse than any baseline that uses links because each edge has

to be visited at least once. For dense graphs, the time can be quadratic in the number of objects.

However, in practice, we usually encounter sparse graphs, on which the method runs in linear time

and can scale well.
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7.4 Discussions

To use the community outlier detection algorithm more effectively, the following questions need to

be addressed: 1) How to set the hyper parameters? 2) What is a good initialization of the label

assignment Z? 3) Can the algorithm be applied to any type of data?

Setting Hyper-parameters

We need users’ input on three hyper-parameters: threshold a0, link importance λ, and the

number of components K. Intuitively, a0 controls the percentage of outliers r discovered by the

algorithm. We will expect a large number of outliers if a0 is low and few outliers if a0 is high.

Therefore, we can transform the problem of setting a0, which is difficult, to an easier problem to

choose the percentage of outliers r. To do this, in Algorithm 5, we first let ẑi = arg mink Ui(k)(k 6=
0) for each i ∈ I, and sort Ui(ẑi) for i = 1, . . . , M and select the top r percent as outliers.

λ > 0 represents our confidence in the network structure where we put more weights on the

network and less weights on the data if λ is set higher. Therefore, if λ is lower, the outliers

found by Algorithm 6 is more similar to the results of detecting outliers merely based on nodes

information. On the other hand, a higher λ makes the network structure play a more important role

in community discovery and outlier detection. It is obvious that if we set λ to be extremely high,

and the graph is connected, then every node will turn out to have the same label. To avoid such

cases, we set an upper bound λC so that for any λ > λC , the results contain empty communities.

With this requirement, we show that the proposed algorithm is not sensitive to λ in Section 7.5.

K is a positive integer, denoting the number of normal communities. In principle, it controls

the scale of the community, and thus a small K leads to “global” outliers, whereas the outliers

are determined locally if lots of communities are formed (i.e., large K). Many techniques have

been proposed to set K effectively, for example, Bayesian information criterion (BIC), Akaike

information criteria (AIC) and minimum description length (MDL). Here, we use AIC to set the

number of normal communities. It is defined as:

AIC(∆) = 2b− 2 lnP (X|∆) (7.11)
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where ∆ denotes the set of hyper-parameters and b is the number of parameters to be estimated

(model complexity). Since P (X|∆) is hard to obtain, in the proposed algorithm, we use P (X|Ẑ, ∆)

to approximate it by assuming that Ẑ is the true configuration of the hidden variables.

Initialization

Good initialization is essential for the success of the proposed community outlier detection al-

gorithm, otherwise the algorithm can get stuck at some local maximum. Instead of starting with

a random initialization, we initialize Z by clustering the objects without assigning any outliers.

Although this may affect the estimation of the model parameters at the first iteration, it can grad-

ually get corrected while we update Z and nominate outliers in the E-step. To overcome the barrier

of local maximum, we repeat the algorithm multiple times with different initialization and choose

the one that maximizes the likelihood.

Extensions

We have provided models for continuous and text data, which already covers lots of applica-

tions. Here, we discuss extension of the proposed approach to more general data formats by using

a distance function. In general, we let the center of each community µk to be the parameter char-

acterizing the community, and define D(si, µk) to be the distance in feature values from any object

si to the center of the k-th community µk. For k = 1, . . . , K, we then define P (xi = si|zi = k) in

terms of the distance function:

P (xi = si|zi = k) ∝ exp(−D(si, µk))

which suggests that given vi is from a normal community, the probability of xi = si increases as

the distance from si to µk gets closer. For example, we can choose D to be a distance function

from the class of Bregman divergence [8], which is a generalization from the Euclidean distance

and is known to have a strong connection to exponential families of distributions.
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7.5 Experiments

The evaluation of community outlier detection itself is an open problem due to lack of groundtruths

for community outliers. Therefore, we conduct experiments on synthetic data to compare detection

accuracy with the baseline methods, and evaluate on real datasets to validate that the proposed

algorithm can detect community outliers effectively.

7.5.1 Synthetic Data

In this part, we describe the experimental setting and results on the synthetic data.

Data Generation

We generate networked data through two steps. First, we generate synthetic graphs, which

follow the properties of real networks–they are usually sparse, follow power law’s degree distribu-

tions, and consist of several communities. The links of each object follow Zipf’s law, i.e., most of

the nodes have very few links, and only a few nodes connect to many nodes. We forbid self-links

and remove the nodes that have no links. Secondly, we infer the label of each node following the

proposed generative model, and sample a continuous number based on the label of each node.

The configuration parameters to describe P (X|Z) include the number of communities K and the

percentage of outliers r. We draw the mean of each community uniformly from [-10,10], let the

standard deviation be 10/K, and generate random numbers using Gaussian probability density.

Baseline Methods

As discussed in Section 7.1, we compare the proposed community outlier detection algorithm

(CODA) with the following outlier detection methods:

• GLODA: This baseline looks at the data values only. We use the popular outlier detection

algorithm LOF [27] to detect “global” outliers without taking the network structure into

account.

• DNODA: This method only considers the values of each object’s direct neighbors in the
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Table 7.3: Comparison of Precisions on Synthetic Data

Precisions
K = 5 K = 8

GLODA DNODA CNA CODA GLODA DNODA CNA CODA
r = 1% 0.0143 0.0714 0.5429 0.6286 0.0571 0.0571 0.4429 0.7429

M = 1000
r = 5% 0.0867 0.2600 0.6930 0.8106 0.0688 0.1554 0.5723 0.6565
r = 1% 0.0118 0.0111 0.1007 0.6565 0.0395 0.0170 0.1536 0.4974

M = 2000
r = 5% 0.0567 0.1779 0.4645 0.6799 0.0649 0.1341 0.4944 0.7047
r = 1% 0.0061 0.0041 0.0510 0.3714 0.0163 0.0000 0.0204 0.5347

M = 5000
r = 5% 0.0496 0.1134 0.1854 0.7302 0.0565 0.0646 0.1602 0.7926

graph. We define the outlier score as:

∑
j∈Ni

D(si, sj)
|Ni| (7.12)

where D is the Euclidean distance function. Ni contains all the direct neighbors of vi in the

graph: Ni = {j : wij > 0, i 6= j}. If si is significantly different from the data of vi’s direct

neighbors, it is considered an outlier.

• CNA: In this approach, we partition the graph into K communities using clustering algo-

rithms [98], and define outliers as the objects that have significantly different values com-

pared with the other objects in the same community. Therefore, the outlier score is cal-

culated in the same way as in Eq. (7.12). But here, Ni stands for the whole community:

Ni = {j : zi = zj , i 6= j} where zi is the community label derived from the clustering of the

network structure.

Empirical Results

In experimental studies, we make each baseline method detect the same number of outliers

as that of the groundtruths. To achieve this, we simply sort the outlier scores obtained by the

three baseline methods in descending order, and take the top r percent as outliers. Then we

use precision, also known as true positive rate, as the evaluation metric. It is defined as the

percentage of correct ones in the set of outliers identified by the algorithm. We vary the scale of

the network to have 1000, 2000 and 5000 nodes respectively. We set the number of clusters K to

be either 5 or 8, and the percentage of outliers r to be either 1% or 5%.

For each parameter setting, we randomly generate 10 sets of networked data, and report the
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average precisions of all the methods in Table 7.3. It is clear that GLODA fails to find most of

community outliers because the method completely ignores the network structure information. The

approach that only checks the direct neighbors of each object to determine outliers (DNODA) also

has a low precision. On the other hand, if we first discover the communities, and then identify

outliers based on the peers in the community, the precision is improved as shown in the method

CNA. The proposed CODA algorithm further increases the precision by modeling both data and

link information. We can observe the consistent improvements where the margin of precision in-

crease is from 8% to 60%.

Sensitivity

Figure 7.3 shows the performance of the CODA algorithm when we vary λ from 0.1 to 0.7, as

illustrated using the solid line. The dotted line represents the performance of the best baseline

method CNA applied on the same data set. The results are obtained on the synthetic data with

1000 objects, 5 communities and 1% community outliers. It is clear that in spite of slight changes

caused by parameter variation, the proposed method improves over the best baseline method. We

let λ = 0.2 to get the experimental results shown in Table 7.3.

Time Complexity

Suppose the number of objects is M , and the number of edges is E. In M-step, we need to

visit all the objects to calculate the model parameters, so the time complexity is O(M). In E-step,
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for each object vi, the posterior energy function Ui has to aggregate the effect of the labels of vi’s

neighbors to compute P (Z). Therefore, in principle, the time of the E-step is O(E). Real network

is usually sparse, and thus the computation time of the proposed approach can be linear in the

number of objects. Figure 7.4 presents the average running time of the CODA algorithm on the

synthetic data. We generate sparse networks using power law distribution where the number of

edges grow linearly, and thus the running time is linear in the number of objects.

7.5.2 DBLP

DBLP1 provides bibliographic information on major computer science journals and proceedings.

We extract two sub-networks from the DBLP data: a conference relationship network and a co-

authorship network.

Sub-network of Conferences

In the conference relationship network, we use 20 conferences from four research areas as the

nodes of the graph, and construct a similarity graph based on the 20 nodes. Suppose there are L

authors, then each conference has a L × 1 vector Ai, whose l-th entry is the number of times the

l-th author publishes in the i-th conference. We use cosine similarity to represent the link weight

between two conferences:

wij = cos(Ai, Aj) =
Ai ·Aj

||Ai||||Aj || . (7.13)

This suggests that the conferences that attract the same set of authors have strong connections,

and such conferences may form a research community. Additionally, we have a document attached

to each node, which contains all the published titles in the conference. We conduct the community

outlier detection algorithm on this network to obtain the outlier that has a different research theme

compared with the other conferences containing similar researchers.

From this dataset, we find the following communities:

• Database: ICDE, VLDB, SIGMOD, PODS, EDBT

• Artificial Intelligence: IJCAI, AAAI, ICML, ECML
1http://www.informatik.uni-trier.de/∼ley/db/
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Table 7.4: Top Words in Communities
Communities Keywords

Data frequent dimensional spatial association similarity
Mining pattern fast sets approximate series

oriented views applications querying designDatabase
access schema control integration sql

Artificial reasoning planning logic representation recognition
Intelligence solving problem reinforcement programming theory
Information relevance feature ranking automatic documents

Analysis probabilistic extraction user study classifiers

• Data Mining: KDD, PAKDD, ICDM, PKDD, SDM

• Information Analysis: SIGIR, WWW, ECIR, WSDM

The community outliers detected by the proposed algorithm include CVPR and CIKM. Clearly,

CVPR is more likely to fall into the AI area because researchers in CVPR will often attend IJCAI,

AAAI, ICML and ECML. However, although people in computer vision utilize many general ar-

tificial intelligence methods, there exist unique computer vision techniques, such as segmentation,

object tracking, and image modeling. Therefore, CVPR represents a community outlier in this

problem. On the other hand, CIKM has a wide-spread scope, and attracts people from information

analysis, data mining, and database areas. Apparently, it has a different research theme from that

of any conference in these areas, and thus represents a community outlier as well.

Sub-network of Authors

We extract a co-authorship network, which contains the authors publishing in the 20 confer-

ences mentioned above from DBLP. We select the top 3116 authors with the highest number of

publications in these conferences, and use them as nodes of the network2. If two researchers have

co-authored papers, there is an edge connecting them in the graph. The weight of the edge is the

number of times two researchers have collaborated. We run the CODA algorithm on this co-author

network to identify communities and community outliers. The top-10 frequent words occurring in

each community identified by the algorithm are shown in Table 7.4. It is obvious that we can dis-

cover four research communities in this co-author network: Database (DB), Artificial Intelligence
2This is a sub-network of the original DBLP network. There could have some information loss in the co-authorship

relationships.
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Researchers & 

Collaborators 

Research Interests 

Dennis Shasha 

DB 19 DM 6 

biological computing, pattern recognition, querying in trees and graphs, pattern discovery in time 

series, cryptographic file systems, database tuning 

Craig A. Knoblock 

IA 4 AI 4  

DM 1 DB 1 

planning, machine learning, constraint reasoning, semantic web, information extraction, gathering, 

integration, mediators, wrappers, source modeling, record linkage, mashup construction, geospatial 

and biological data integration 

Eric Horvitz 

 

IA 9 AI 4 

human decision making, computational models of reflection, action with applications in time-critical 

decision making, scientific exploration, information retrieval, and healthcare 

Sourav S. Bhowmick 

 

IA 8 DM 2 DB 2 

blogs, social media analysis; web evolution, evolution, graph mining; social networks, XML 

storage, query processing, usability of XML/graph databases, indexing and querying graphs, 

predictive modeling, comparison of molecular networks, multi-target drug therapy 

Timothy W. Finin 

IA 6 AI 1 

social media, the semantic web, intelligent agents, pervasive computing 

Jack Mostow 

 

AI 3 IA 2 

focuses on using computers to listen to children read aloud while other interests include machine 

learning, automated replay of design plans, and discovery of search heuristics 

 

Terrance E. Boult 

 

AI 2 IA 1 

vision and security including video surveillance systems, biometrics, biometric fusion, supporting 

trauma treatment, steganalysis, network security, detection of chemical and biological weapons 

Jayant R. Kalagnanam 

DB 3 AI 2 IA 1 

decision support, optimization, economics and their applications to electronic commerce 

Ken Barker 

IA 2 AI 2 DB 1 

knowledge representation and reasoning, knowledge acquisition, natural language processing 

Dimitris Achlioptas 

AI 4 

threshold phenomena in random graphs and random formulas, applications of embeddings and 

spectral techniques in machine learning, algorithmic analysis of massive networks 

 

Figure 7.5: Community Outliers in DBLP Co-authors

(AI), Data Mining (DM), and Information Analysis (IA).

Outliers in this sub-network somehow represent researchers who are conducting research on

some different topics from his collaborators and peer researchers in the community. To illustrate

the effectiveness of the proposed algorithm, we check the research interests listed on the homepages

of the researchers identified by the CODA algorithm. In Figure 7.5, we show each researcher’s name

together with the number of his collaborators in each of the four communities (DB, AI, DM, and

IA) in the first column. Their research interests are shown in the second column. As can be seen,

these researchers indeed studied something different from his collaborators and the majority of the

communities. For example, Jayant R. Kalagnanam mainly focuses on electronic commerce, which

is a less popular topic among his collaborators in Database, Artificial intelligence and Information

Analysis areas. Jack Mostow has focused on using computers to listen to children read aloud, which

is a less studied research theme in Artificial Intelligence and Information Analysis. Through this

example, we demonstrate that the proposed CODA algorithm has the ability of detecting outliers

that deviate from the rest of the community.
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7.6 Related Work

Outlier detection, sometimes referred to as anomaly or novelty detection, has received considerable

attention in the field of data mining [31]. Outlier detection in data without considering contexts is

called global outlier detection. Recently, people began to study how to identify anomalies within a

specific context. These methods are able to detect interesting outliers or anomalies which cannot

be found by existing outlier detection algorithms from a global view. Specifically, the pre-defined

contextual attributes include spatial attributes [148, 158], neighborhoods in graphs [157], and some

contextual attributes [153]. When there is no a priori contextual information available, Wang et al.

propose to simultaneously explore contexts and contextual outliers based on random walks [165].

The proposed community outlier problem differs from these papers in that we use communities in

networks as contexts, and they are inferred based on both data and link information.

Outliers identified in network structures purely by link analysis is referred to as structural

outliers [174]. There are also works devoting to finding unusual sub-graph patterns in networks

[133]. Clearly, these types of outliers are not the same as the community outliers we defined. In

general, outlier detection is unsupervised, i.e., the task is to identify something novel or anomalous

without the aid of labeled data. There exist some semi-supervised outlier detection approaches

that take labeled examples as prior knowledge of label distribution [179, 160, 58]. Different from

these methods, we aim at unsupervised outlier detection on networked data requiring no labeled

data.

In recent years, many methods have been developed to discover clusters or communities in

networks [76]. At first, community discovery is conducted on links only without consulting objects’

information. Such techniques find communities as strongly connected sub-networks by similarity

computation [102, 93] or graph partitioning [149, 125, 99]. Later, it was found that utilizing both

link and data information leads to the discovery of more accurate and meaningful communities [114,

175, 167]. Some relational clustering methods [70, 123] fall into this category when both attributes

of objects and relationships between objects are considered. Among various techniques, Markov

random field [115, 181] is commonly used to model the structural dependency among random

variables and has been successfully applied to many applications, such as image segmentation.

More generally, relational learning explores use of link structure in inference and learning problems
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[73]. Moreover, some semi-supervised clustering techniques based on must-links and cannot-links [9]

can be used to discover communities on networked data as well, where network structures provide

must-links. As shown in the experiments, separating community discovery and outlier detection

cannot work as well as our unified model because absorbing outliers into normal communities

affect the profiling of normal communities, and in turn degrade the performance of the second

stage outlier detection.

7.7 Summary

In this chapter, we discuss a new outlier detection problem in networks containing rich information,

including data about each object and relationships among objects. We detect outliers within the

context of communities such that the identified outliers deviate significantly from the rest of the

community members. We propose a generative model called CODA that unifies both community

discovery and outlier detection in a probabilistic formulation based on hidden Markov random fields.

We assume that normal objects form K communities and outliers are randomly generated. The

data attributes associated with each object are modeled using mixture of Gaussian distributions or

multinomial distributions, whereas links are used to calculate prior distributions over hidden labels.

We present efficient algorithms based on ICM and EM techniques to learn model parameters and

infer the hidden labels of the community outlier detection model. Experimental results show that

the proposed CODA algorithm consistently outperforms the baseline methods on synthetic data,

and also identifies meaningful community outliers from the DBLP network data.
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Chapter 8

Inconsistency Detection for System
Debugging

In today’s large-scale distributed systems, it is important to detect anomalous system behavior

from the large amount of system monitoring data. This procedure is usually referred to as System

Debugging. A distributed system consists of multiple connected machines, and monitoring data

collected from each machine can be regarded as an information source. Although some knowledge

about system problems can be extracted from each individual information source, a much richer

body of knowledge can only be obtained by exploring the correlations or interactions across different

sources. Specifically, the correlations between measurements collected across the distributed system

can be used to infer normal system behavior, and thus a reasonable model to describe such corre-

lations is crucially important in detecting and locating system problems. We propose a transition

probability model to characterize pairwise measurement correlations [66]. Different from existing

methods, the proposed solution can discover both the spatial (across system measurements) and

temporal (across observation time) correlations, and thus such a model can successfully represent

the system normal profiles. Whenever a record cannot be explained by the correlation model,

it represents an anomaly. The effectiveness of this framework is demonstrated in its ability of

detecting anomalous events and locating problematic sources from real monitoring data of three

companies’ infrastructures.

8.1 Overview

Recent years have witnessed the rapid growth of complexity in large-scale information systems.

For example, the systems underlying Internet services are integrated with thousands of machines,

and thus possess unprecedented capacity to process large volume of transactions. Therefore, large

amount of system measurements (metrics) can be collected from software log files, system audit
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Figure 8.1: Measurements as Time Series.

events and network traffic statistics. To provide reliable services, system administrators have to

monitor and track the operational status of their infrastructures in real time and fix any problems

quickly. Due to the scale and complexity of the system, we have to automate the problem deter-

mination process so as to reduce the Mean Time to Recovery (MTTR). It is a challenging task to

automatically detect anomalies in a large system because both the normal and anomalous behavior

are heterogeneous and dynamic. In fact, the widely existing correlations among measurements

are very useful for autonomic system management. Therefore, we propose a novel method that

can effectively characterize the correlations across different system measurements and observation

time. The method captures the complicated and changing normal profiles, and thus can be used

to quickly detect and locate system problems.

Each distributed system usually consists of thousands of components, such as operating systems,

databases, and application softwares. On each component, we are interested in its usage parameters,

such as CPU and memory utilization, free disk space, I/O throughput and so on. Suppose we

monitor l measurements for a particular system, and each measurement ma (1 ≤ a ≤ l) is uniquely

defined by the component (e.g., database) and the metric (e.g., memory usage). Due to the

dynamic nature of workloads received by the system, the measurement values usually change with

time. Therefore, each measurement ma can be viewed as a time series. We call the set of time series

collected from the system as the monitoring data. Correlations are commonly found among the

measurements because some outside factors, such as work loads and number of user requests, may

affect them simultaneously. For example, the two measurements shown in Figure 8.1 are correlated.
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Figure 8.2: Pair-wise Measurement Correlations Shown in Two-dimensional Space

For the purpose of problem determination, it is essential to check the correlations among mea-

surements instead of monitoring each measurement individually. A sudden increase in the values of

a single measurement may not indicate a problem, as shown by the peaks in Figure 8.1(a) and Figure

8.1(b), instead, it could be caused by a flood of user requests. Monitoring multiple measurements

simultaneously, we can identify this scenario as normal when we find that many measurements

values increase but their correlations remain unchanged. Therefore, profiling measurement corre-

lations can help find the “real” problems and reduce “false positives”. We are especially interested

in tracking the pair-wise correlations, i.e., the correlations between any two measurements because

it can assist quick problem localization. In Figure 8.2(a), we illustrate pair-wise correlations using

a graph where each node represents a measurement and an edge indicates the correlation. At a

certain time point, if all the links leading to a measurement ma have certain problems, the system

administrator can directly locate the problem source, i.e., ma. The pair-wise correlations can be

roughly divided into linear and non-linear categories. To observe the correlations more clearly, we
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extract the values of two measurements m1 and m2 at each time point t, and plot (m1
t ,m

2
t ) as

a point in the two-dimensional space. Figure 8.2(b)-(c) shows the measurement values extracted

from real systems. Clearly, measurements in Figure 8.2(b) (the rate of traffic goes in and out the

same machine), exhibit linear correlations, and Figure 8.2(c) (in and out traffic rate on two differ-

ent machines), and Figure 8.2(d) (PORT throughput and utilization) demonstrate the non-linear

relationships. In real monitoring data, we find that nearly half of the measurements have linear

relationships with at least one of the other measurements, but the other half only have non-linear

ones. Therefore, to model the behavior of the whole system, we need analysis tools that can identify

both types of correlations.

Some efforts have been devoted to model the linear measurement correlations in distributed

systems [94, 131]. Specifically, linear regression models are used to characterize the correlations,

such as the one in Figure 8.2(b). Once the extracted linear relationship is broken, an alarm is

flagged. In [79], the authors assume that the two-dimensional data points come from a Gaussian

Mixture and use ellipses to model the data “clusters”, so the points falling out of the cluster

boundaries are considered anomalous events, as shown in Figure 8.2(c). Despite these efforts, there

are many problems that restrict the use of the correlation profiling tools in real systems. First,

existing work only focuses on one type of correlations, and thus cannot characterize the whole

system precisely. Secondly, the assumption on the form of the data points may not be true (e.g.,

linear relationships or ellipse-shape clusters). For example, in Figure 8.2(d), the data points form

arbitrary shapes and cannot be modeled by existing methods. Most importantly, how the data

evolve is an important part of the system behavior, so besides spatial correlations, correlations

across observation time should also be taken into consideration.

In light of these challenges, we propose a grid-based transition probability model to characterize

correlations between any two measurements in a distributed system. As shown in Figure 8.2(d),

we partition the space into a number of non-overlapping grid cells and map the data points into

corresponding cells. A transition probability matrix is then defined over the two-dimensional grid

structure where each entry Vij corresponds to the probability of transitions from grid cell vi to vj .

We initialize both the grid structure and the transition probability matrix from a snapshot of history

monitoring data, e.g., collected from last month, and adapt them online to the distribution changes.

148



We then propose a fitness score to evaluate how well one or all the measurements are described by

the correlation models. Once the fitness score drops below a threshold, it indicates that certain

system problems may occur. Our contributions are: 1) We propose a novel probability model

to characterize both spatial and temporal correlations among measurements from a distributed

system. Based on the model, we develop methods to detect and locate system problems. 2) We

make no assumptions on the type of correlations and data distributions, therefore, the proposed

framework is general and can capture the normal behavior of the entire distributed system. Also,

the model is easy to interpret and can assist later human debugging. 3) We demonstrate the

proposed approach’s ability of system problem detection and diagnosis by experimenting on one

month’s real monitoring data collected from three companies’ IT infrastructures. We present the

probability model in Section 8.2. Section 8.3 and Section 8.4 introduce how to compute and use

the model. In Sections 8.5 and 8.6, we discuss experimental results and related work.

8.2 Transition Probability Model

At time t, the values of two system measurements m1 and m2 can be regarded as a two-dimensional

feature vector xt = (m1
t ,m

2
t ). Then the task is to build a model M based on the incoming

data x1,x2, . . . ,xt, . . . to describe the correlations. Suppose x is drawn from S = A1 × A2, a

2-dimensional bounded numerical space. We partition the space S into a grid consisting of non-

overlapping rectangular cells. We first partition each of the two dimensions into intervals. A

cell is the intersection of intervals from the two dimensions, having a form c = (v1, v2), where

va = [la, ua) is one interval of Aa (a ∈ {1, 2}). A data point x = (m1,m2) is contained in the cell

c if la ≤ ma < ua for a = 1 and a = 2. If A1 and A2 are partitioned into s1 and s2 intervals, there

are altogether s = s1× s2 cells. The collection of all the non-overlapping rectangular cells is called

grid structure: G = {c1, c2, . . . , cs}.
We define the probability of having a new observation xt+1 based on G. To simplify the problem,

we assume that the future observation is only dependent on current value and not on any past ones

(markov property), i.e., P (xt+1|xt, . . . ,x1) = P (xt+1|xt). The experimental results in Section

8.5 show that this assumption works well in practice. Suppose xt+1 ∈ cj and xt ∈ ci, we then

approximate P (xt+1|xt) using P (xt+1 ∈ cj |xt ∈ ci), which is the probability of xt+1 falling into
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Table 8.1: Transition Probability Matrix
c1 c2 c3 c4 c5 c6 c7 c8 c9

c1 21.98% 14.65% 8.79% 14.65% 10.99% 7.33% 8.79% 7.33% 5.49%
c2 13.16% 19.74% 13.16% 9.87% 13.16% 9.87% 6.58% 7.89% 6.58%
c3 8.79% 14.65% 21.98% 7.33% 10.99% 14.65% 5.49% 7.33% 8.79%
c4 13.16% 9.87% 6.58% 19.74% 13.16% 7.89% 13.16% 9.87% 6.58%
c5 8.82% 11.76% 8.82% 11.76% 17.65% 11.76% 8.82% 11.76% 8.82%
c6 6.58% 9.87% 13.16% 7.89% 13.16% 19.74% 6.58% 9.87% 13.16%
c7 8.79% 7.33% 5.49% 14.65% 10.99% 7.33% 21.98% 14.65% 8.79%
c8 6.58% 7.89% 6.58% 9.87% 13.16% 9.87% 13.16% 19.74% 13.16%
c9 5.49% 7.33% 8.79% 7.33% 10.99% 14.65% 8.79% 14.65% 21.98%

cell cj when xt belongs to cell ci (ci, cj ∈ G). To facilitate later discussions, we use P (xt → xt+1)

to denote P (xt+1|xt), and use P (ci → cj) to denote P (xt+1 ∈ cj |xt ∈ ci). Since ci and cj are

drawn from the collection of grid cells G = {c1, c2, . . . , cs}, we can define a s by s matrix V where

Vij = P (ci → cj). Row i (1 ≤ i ≤ s) of the matrix V defines a discrete probability distribution

P (ci → cj) (
∑s

j=1 P (ci → cj) = 1) for the transitions from ci to any cell in the grid (cj ∈ G). A

snapshot of monitoring data from two measurements is plotted in Figure 8.3. The feature space

is partitioned into nine grid cells: c1, c2, . . . , c9, and in Table 8.1, we show an example probability

matrix V9×9. Suppose xt is contained in cell c5, the discrete probability distribution of xt+1 given xt

is then characterized by V51, V52, . . . , V59. As shown in Figure 8.4, higher probability on cj indicates

that xt+1 is more likely to jump to cj when its original location is c5.

Therefore, the model to characterize the pair-wise correlations consists of the grid structure

and the probability matrix: M = (G, V ). In Section 8.3, we discuss the methods to initialize and

update the model. In Section 8.4, we describe how to use the model to determine system problems.
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8.3 Model Computation

The framework of learning and updating the correlation probability model for problem determi-

nation is depicted graphically in Figure 8.5. We first initialize the model from a set of history

data. The model is then put into use on the continuously flowing monitoring data. Based on the

observed xt+1 and xt, the model outputs P (xt → xt+1) and if it is below a certain threshold δ, an

alarm is flagged. We update the model to incorporate the actual transition made by xt+1 if it is

normal. Since the model is comprised of grid structure G and probability matrix V , we present the

learning algorithms for both of them as follows.

8.3.1 Grid Structure

Initialization. Based on a set of history data {xt}n
t=1, we seek to design a grid structure G,

defined by a set of grid cells {c1, c2, . . . , cs}. Each cell is represented by a rectangle in the two-

dimensional space. We compute the grid cells by setting their boundaries on the two dimensions

separately. Formally, each cell c is defined as the intersection of any interval from each of the two

dimensions, and the grid structure is thus represented by {(v1
i , v

2
j )}s1,s2

i=1,j=1, where v1
i and v2

j are

intervals of A1 and A2 respectively.

Now the problem is: For data mapped onto one dimension a: Xa = {xa
1, x

a
2, . . . , x

a
n}, we wish to

discretizeAa into sa intervals to hold all the data points. We would compute transition probabilities

based on the grid structure, so it should reflect the data distribution. Also, the computation needs
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to be efficient since multiple pairs of measurements may be watched. Therefore, we propose an

efficient approach to partition each dimension into intervals adaptive to the data distribution based

on MAFIA [77], a clustering method. We first get the upper and lower bound la and ua from Xa

and divide [la, ua) into small equal-sized units with unit length za. Note that za is much smaller

than the actual interval size of the grid structure. We count the number of points falling into each

unit. Adjacent units are then merged to form an interval if their counts are similar with respect

to a threshold, or are both below a density threshold. The basic idea behind this is to represent

the dense areas using more cells, and regions with similar probability densities can be represented

using one cell because they may have similar transition patterns. If the data are equal-distributed,

we ignore the above procedure and simply divide the dimension into equal-sized intervals. We run

the above procedure for each dimension and obtain all the cells by intersecting intervals of the two

dimensions. Figure 8.6 shows an example of the history data and the grid structure the algorithm

generates for the data.

Update. During the online process, most of the time, a new observation xt+1 falls into one

of the cells defined by the grid structure G. However, it is likely that xt+1 is out of the boundary

defined by G. Then either xt+1 is an outlier, or the underlying distribution has changed. We wish

to ignore the outliers, but only adapt the grid structure according to the distribution evolution.

However, it is challenging to distinguish between the two cases in a real-time manner. We observe

that real data usually evolve gradually, thus we assume that the boundary of the grid structure is

also changing gradually. Therefore, when xt+1 is not contained in any cells of G, we only update

G if xt+1 is close enough to the grid boundary. For each dimension Aa, we compute the average

interval size ra
avg offline during initialization and suppose the upper bound of G on dimension Aa is

ua. When xa
t+1 > ua for a = 1 or 2, we first judge if xa

t+1 ≤ ua + λa · ra
avg, where λa is a parameter

indicating the maximum number of intervals to be added. If it holds true, we take it as a signal of

potential distribution evolution and add intervals to the dimension until xt+1 is contained within

the boundary. New cells are incorporated into G as the intersections of the added intervals and

the intervals from the other dimension. Note that we do not delete cells having sparse densities to

maintain the rectangular shape of the grid structure for fast computation. Figure 8.7 shows the

online data and the accordingly updated grid structure, whereas the offline structure is illustrated
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in Figure 8.6. It can be seen that the data evolve along the vertical axis, and thus two more

intervals are added to accommodate such changes.

8.3.2 Transition Probability Matrix

We seek to compute P (ci → cj) for any ci and cj in G, i.e., the transition probability between

any pair of cells. One natural solution is to compute the empirical distribution based on the set of

monitoring data D. Specifically, let P (ci → cj) be the percentage of examples jumping to cj when it

originally stays at ci. Although the empirical probability can capture most transitions, it may not be

accurate on the transitions which are under represented or even unseen in past records. We therefore

need to adjust the empirical distribution to make it smooth over the space so that an unseen

transition may still have chances to occur in the future. Therefore we introduce a prior into the

distribution using the following bayesian analysis technique [71]: P (ci → cj |D) = P (D|ci→cj)P (ci→cj)
P (D)

where ci → cj indicates the existence of a transition from cell ci to cj and D is monitoring data

set. The transitions are assumed to be independent of each other. Also, our aim is to infer ci → cj ,

so the term P (D) is not relevant and can be omitted:

P (ci → cj |D) ∝ P (ci → cj)
n−1∏

t=1

P (xt → xt+1|ci → cj) (8.1)
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where n is the size of D. The two steps under this bayesian framework include: 1) define a

prior distribution for P (ci → cj) for any ci and cj , and 2) update the distribution based on each

observed transition from xt to xt+1. After all data points in D are seen, we can obtain the posterior

probability P (ci → cj |D). We explain the two steps as follows.

Prior Distribution. Bayesian methods view the transition from ci to cj as a random variable

having a prior distribution. Observation of the monitoring data converts this to a posterior distri-

bution. When a transition is seldom or never seen in the data, the prior will play an important role.

Therefore, the prior should reflect our knowledge of the possible transitions. The question is, given

xt ∈ ci, which cell is the most probable of containing xt+1? With respect to our assumption that

the monitoring data evolve gradually, the transition would have the “spatial closeness tendency”,

i.e., the transitions between nearby cells are more probable than those between cells far away. To

support this claim, we check the number of transitions with respect to the cell distance in two

days’ measurement values. We find that the total number of transitions is 701, among which 412

occurs inside the cells, i.e., the data points would simply stay inside a certain cell. There are 280

transitions between a cell and its closest neighbor. As the cell distance increases, it becomes less

likely that points move among these cells. Therefore, the “spatial closeness tendency” assumption

is valid. Based on this finding, we define the prior distribution as P (ci → cj) ∝ P (ci→ci)

wd(ci,cj) where

d(ci, cj) is the distance between ci and cj , and w is the rate of probability decrease. If we observe

that xt belongs to ci, it is most likely that xt+1 stays at ci as well. We set P (ci → ci) to be

the highest and as cj departs further away from ci, P (ci → cj) decreases exponentially. From the

definition and the constraints that
∑s

j=1 P (ci → cj) = 1, the prior probability of having transitions

from ci to any cell can be computed. An example prior distribution of transiting from cell c12

to other cells is shown in Figure 8.8. It can be seen that the transition probability at c12 is the

highest, followed by the probability of transitions to its closest neighbors.

Distribution Updates. According to Eq. (8.1), to update the prior distribution, we need to

multiply it by P (xt → xt+1|ci → cj). If xt+1 in fact falls into ch, we should set P (xt → xt+1|ci → ch)

to be the highest among all the pairs of cells. Also, due to the “spatial closeness tendency”, it is

likely that a future transition can occur from ci to ch’s neighbors. Again, we assume an exponential

decrease in the transition probability with respect to the cell distance and use the following update
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C12

Figure 8.8: Initial Transitions

C10

Figure 8.9: Updated Transitions

rule:

P (xt → xt+1|ci → cj) ∝ P (xt → xt+1|ci → ch)
wd(ch,cj)

if xt+1 ∈ ch and xt ∈ ci (8.2)

On Eq. (8.1), we take log over all the probabilities, and the updates can be performed using

additive operations. Note that we update the transition probability only on normal points, but

not on outliers with zero probability. The updating equation is applied on the i-th row of the

transition probability matrix where ci is the cell xt belongs to. We start the updating procedure

from x1 where P (ci → cj |x1) is assumed to be the prior: P (ci → cj), and repeatedly execute it for

i = 2, . . . , n− 1. The prior distribution shown in Figure 8.8 is updated using six days’ monitoring

data and the posterior probability distribution on cell c12 is depicted in Figure 8.9. The prior

probability of going from c12 to c12 is the highest, but it turns out that many transitions from c12

to c10 are observed, so the probability at c10 becomes the highest in the posterior.

8.4 Problem Determination and Localization

In this section, we discuss how to determine problems in a distributed system with l measurements

available. Since we build pair-wise correlation models for any two measurements, we have l(l−1)/2

models to characterize all the correlations within the whole system. We propose a fitness score as
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Figure 8.10: Fitness Score Computation

an indicator for the probability of having system problems, which is defined at the following three

levels and measures how well the models fit the monitoring data.

1) Each pair of measurements at a given time: For a pair of measurements ma and mb

at time t+1, suppose the most updated model derived from the monitoring data from time 1 to t is

Ma,b
t+1. x represents the two dimensional feature vector consisting of measurement values from ma

and mb. Suppose xt falls into cell ci. At time t+1, the model Ma,b
t+1 outputs the transition probability

from ci to any cell cj in the grid (1 ≤ j ≤ s). We define a ranking function π(cj) : π(cj) < π(ck)

if P (ci → cj) > P (ci → ck). In other words, cj would be ranked higher if the probability of going

from ci to cj is higher. We then define the fitness score as Qa,b
t+1 = 1−

π
M

a,b
t+1

(ch)−1

s
M

a,b
t+1

where ch is the

cell xt+1 actually belongs to, and s
Ma,b

t+1
is the number of grid cells in model Ma,b

t+1. Outliers that

lie outside the grid have zero transition probability, and thus their fitness scores are zero as well.

Figure 8.10 illustrates the fitness score computation through an example. Suppose xt is contained

in cell c4 and the transition probability from c4 to other cells is shown in the left part of the figure.

If xt+1 is in cell c5, we first sort the cells according to the transition probability and c5 is ranked at

the 4-th place. Then to compute the fitness score, we have π
Ma,b

t+1
= 4 and s

Ma,b
t+1

= 6, so the result

is 0.5. To examine the effect of fitness scores, we repeat the above procedure for the other cells

and the results are shown in Figure 8.10. As can be seen, the fitness score Q measures the fitness

of model Ma,b
t+1 on the observed monitoring data. 2) Each measurement at a given time: For

a measurement ma(1 ≤ a ≤ l), we can derive l − 1 different models, each of which characterizes

the correlations between ma and mb (b = 1, . . . , a− 1, a + 1, . . . , l). At time t + 1, the fitness score

for ma is computed as: Qa
t+1 =

∑
b6=a Qa,b

t+1

l−1 where Qa,b
t+1 is the fitness score for the model built upon

ma and another measurement mb. The fitness score of a single measurement is determined by the
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fitness of correlation models constructed for its links to all the other measurements. 3) At a given

time : We aggregate the scores from l measurements into one score Qt+1, which can be used to

judge if there are any problems in the entire system at time t + 1. Again, this can be achieved by

averaging the fitness scores of all the measurements.

At the finest level, Qa,b
t+1 only evaluates the correlation model between two measurements (e.g.,

one link in Figure 8.2(a), such as the link between “CPU Usage at Server A” and “Memory Usage

at Server C”). Qa
t+1 is the aggregation of Qa,b

t+1, i.e., examining the l− 1 links leading to one node.

For example, the fitness score for measurement “CPU Usage at Server A” is computed based on

all its links. Qt+1 works for the entire system by aggregating all the fitness scores (e.g., all the

links in Figure 8.2(a)). In general, this evaluation framework can provide different granularity in

the data analysis for system management. We can first merge the fitness scores of all the system

components so that the system administrators can monitor a single score for system-wide problems.

If the average score deviates from the normal state, the administrators can drill down to Qa
t+1 or

even Qa,b
t+1 to locate the specific components where system errors occur. We can expect a high

fitness score when the monitoring data can be well explained by the model, whereas anomalies in

system performance lead to a low score.

8.5 Experiments

We demonstrate the effectiveness and efficiency of the proposed method through experiments on a

large collection of real monitoring data from three companies’ infrasturcture. Due to privacy issue,

we cannot reveal their names and will denote them as A, B and C in the following discussions. Each

company provides a certain Internet service and has over a hundred servers to support user requests

every day. On each server, a wide range of system metrics are monitored that are of interests

to system administrators, for example, free memory amount, CPU utilization, I/O throughput,

etc. A metric obtained from a machine represents a unique measurement. For example, CPU

utilization on machine with IP “x.x.x.x” is one measurement. We expect that correlations exist

among measurements from the same machine, as well as across different machines, because the

whole system is usually affected by the number of user requests.

For each group, there are roughly 3000 measurements collected from around 150 machines. We
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Figure 8.11: Fitness Scores When System Problems occur

select 100 from each group and conduct the experiments on the 3×




100

2


 pairs of measurements.

To test on the difficult cases, we enforce the following selection criteria: 1) The sampling rate

should be reasonably high, at least every 6 minutes; 2) The measurements do not have any linear

relationships with other measurements; and 3) The measurement should have high variance during

the monitoring period. We wish to find out the proposed transition probability model’s ability in

profiling the system normal behavior. To achieve this, we sample a training set to simulate history

data, and a test set, which can be regarded as online data, from the one month’s monitoring data

(May 29 to June 27, 2008). We compute a model from the training set and evaluate it on the

test set. To examine how the sizes of the training and test set affect the model performance, we

construct the following training and test sets and conduct experiments on all the combinations for

each of the three groups. Training sets: 1) 1 day (May 29), 2) 8 days (May 29-June 5), and 3)

15 days (May 29-June 12). Test sets: 1) 1 day (June 13), 2) 5 days (June 13-June 17), 3) 9 days

(June 13-June 21), and 4) 13 days (June 13-June 25).

Problem Determination. In this part, we assess the performance of the proposed method in

system problem determination. The distributed systems in use are usually stable and do not have

any critical failures. Therefore, we test our methods on three pairs of system measurements where

potential problems occur as identified by the system administrators. Based on these events, we can

get some general ideas about the proposed method’s effectiveness in problem determination. Figure

8.11 depicts the fitness scores for three pairs of measurements where the ground-truth problems are

found. The test set is one day’s monitoring data and the problems are found in the morning (Group

A), or in the afternoon (Group B and C). The two measurements are CurrentUtilization PORT and

ifOutOctetsRate PORT (Group A), ifOutOctetsRate PORT and ifInOctetsRate PORT (Group B),
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Figure 8.12: Q Scores w.r.t Locations

and CurrentUtilization IF and ifOutOctetsRate IF (Group C). It clearly shows that the anomalies

identified by the proposed transition probability method are consistent with the ground-truth in

all the three cases. During the period when a problem occurs, we can observe a deep downward

spike in the plot of fitness score, which means that this problematic time stamp receives a much

lower fitness score compared with normal periods. To provide some intuitive ideas about how the

method detects these anomalies, we show the normal and anomalous transitions for the experiments

on Group B. From 12am up to 2pm, the values of the two measurements stay within the normal

ranges [47.321,22588] & [88.83,34372], however, an anomalous jump to the grid cell [22588,45128]

& [102940,137220] is observed, which leads to the downward spike in the fitness score. After that,

the measurements fall into either the above normal ranges or [22588,67670] & [34372,51510], which

gives a little disturbance to the fitness scores until 8pm. Finally, the measurements go back to

their normal values and thus the fitness score stabilizes at 1. Note that we omit the transition

probability here, but only give the normal and anomalous transitions to illustrate the basic idea.

So the proposed model can help detect the system problems as well as investigate the problem

causes.

We also try to identify the specific machine where the problem locates within the whole dis-

tributed system. To do so, we compute the average fitness score among measurements collected

from the same machine and plot the score distribution across each information system in Figure

8.12. The locations with low fitness scores are the potential problem sources. Because the mon-

159



6.13−6.13 6.13−6.17 6.13−6.21 6.13−6.25
0.88

0.9

0.92

0.94

0.96

0.98
(a) Fitness Score−−Group A

5.29−6.12

5.29−6.5

5.29−5.29

6.13−6.13 6.13−6.17 6.13−6.21 6.13−6.25
0

10

20

30

40

50

R
un

ni
ng

 T
im

e 
(s

)

(b) Updating Time−−Group A

 

5.29−5.29
5.29−6.5
5.29−6.12

Figure 8.13: Average Fitness Score and Updating Time

itoring data from the three information systems have different characteristics and distributions,

the scales of fitness scores on the three groups are different. We can see that most of the fitness

scores are above a certain threshold within each group, which implies that most of the servers are

stable and have few problems. There are only a few servers with low average scores, where the

system administrators need to check carefully. For example, in Figure 8.12, there is only 1 machine

scoring at below 0.9 in group A, much lower than the scores of other machines. We should pay

more attention to this server in future monitoring and analysis.

Offline versus Adaptive. In the following experiments, we show the method’s performance

on all pairs of measurements by analyzing the fitness scores. As discussed, the real distributed

system exhibits normal behavior most of the time, therefore, a good model should predict the

system behavior well and generate a high average fitness score. First, we compare the following two

methods: Offline methods where the model is derived from the training set offline, and Adaptive

methods where the model is initialized from the training set but updated based on online test set.

It would be interesting to see if online model updating can provide additional benefits to the offline

model. In Section 8.4, we show that, at each sampling point, a fitness score Qt+1 is computed to

reflect the effectiveness of the current model. Therefore, we can evaluate the performance of offline

and adaptive methods by averaging the fitness scores computed according to their generated model

at each time stamp. When the model is continuously good, the average fitness score would be high.

Due to the space limit, we only show the experimental results on group A. The experiments on the

other two groups have similar patterns. The results are shown in Figure 8.13(a), where solid and
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dotted lines represent adaptive and offline methods respectively. It can be seen that the adaptive

method usually improves the fitness score over the offline method, especially when the training set

is small. When history data are limited, online updating of the model is necessary. But when we

have sufficient history data, the models from offline analysis can predict reasonably well on the

test set. When the size of the test set increases, we can observe an increase in the fitness scores,

which can be explained by the fact that large sample size usually reduces the estimates’ variance.

Typically, the average fitness score is between 0.8 and 0.98, indicating that the proposed model

captures the transitions in monitoring data and is capable of predicting the future.

Updating Time. In this part, we evaluate the adaptive method’s efficiency. First, once we

have a new observation, we simply determine the grid cell it falls into and look up the transition

probability matrix to get the prediction, so the time of applying the model to make predictions is

negligible. On the other hand, we have relatively more time to spend for offline analysis. Therefore,

the time of updating the model online is the most important part in efficiency analysis. Figure

8.13(b) shows the online updating time of the adaptive method. When the training samples are

sufficient (9 days or 15 days), it costs below 10 seconds to process more than 4,000 monitoring data

points, i.e., less than 2.5 milliseconds per sample, much smaller than the sampling frequency (6

minutes). If the period of the training set drops to one day, the updating time increases greatly.

Because the history data set does not contain enough examples to initialize the model accurately,

the model has to be updated frequently online. However, even in the worst case, the updating time

is less than 23 milliseconds per sample. So the proposed method is efficient and can be embedded

in online monitoring tools.
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Periodic Patterns. The volume of user requests usually affects the system behavior. Heavier

work loads can make the system less predictable. Therefore, when we examine the fitness score at

each time stamp Qt+1 over a period of 9 days, we find some interesting periodic patterns in Figure

8.14. We initialize the model using one day’s monitoring data, then update and evaluate it on the

data from June 13 to June 21. It is obvious that higher fitness scores are obtained during the time

when the system is less active including the weekends. At peak hours, the model has lower fitness

scores because the system is heavily affected by the large volume of user requests and would be

difficult to predict correctly. When more history data are employed in building the initial model,

the fitness scores can be improved greatly. To illustrate this, we vary the size of the training set and

plot the fitness scores on one day’s monitoring data (June 13), shown in Figure 8.15. When only

one day’s data are used as training set, the fitness score drops when heavy workloads increase the

prediction complexity. But the model initialized from 15 days’ history data greatly improves the

stability, with a fitness score above 0.9 during both peak and non-peak hours. The results suggest

that it is important to incorporate more training samples that share similar properties with the

online data to learn the initial model.

8.6 Related Work

Due to the increase in complexity and scale of the current systems, it becomes important to

utilize the measurement correlation information in system logs for autonomic system management.

Methods are developed to model correlations of request failures [35], or among server response

time [7]. Correlating monitoring data across complex systems has been studied recently, when

algorithms are developed to extract system performance invariants [94, 131] and describe the non-

linear correlations [79]. Our proposed method distinguishes itself from the above methods by

modeling both spatial and temporal correlations among measurements. In markov model based

failure prediction methods [143], the temporal information is taken into consideration, but they

require the event-driven sources, such as system errors as input. Conversely, our method does

not require any knowledge about the system states. The problem of anomaly detection has been

extensively studied in several research fields. Particularly, many algorithms have been developed

to identify faults or intrusions in Internet [117] or wireless network [36] by examining network
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traffic data. Different from the above methods, our approach models the data evolution instead

of static data points, and thus detects outliers from both spatial and temporal perspectives. In

the proposed framework, we partition the two-dimensional data space into grid cells. The idea of

space partitioning is motivated by grid-based clustering algorithms [77]. The term “grid” refers

to the resulting discretized space, thus carries a completely different meaning from that in “grid

computing”.

8.7 Summary

In this chapter, we describe a novel statistical approach to characterize the pair-wise interactions

among different components in distributed systems. We discretize the feature space of monitoring

data into grid cells and compute the transition probabilities among the cells adaptively according

to the monitoring data. Compared with previous system monitoring techniques, the advantages

of our approach include: 1) It detects the system problems considering both spatial and temporal

information; 2) The model can output the problematic measurement ranges, which are useful for

human debugging; and 3) The method is fast and can describe both linear and non-linear correla-

tions. Experiments on monitoring data collected from three real distributed systems involving 100

measurements from around 50 machines, show the effectiveness of the proposed method.
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Chapter 9

Conclusions and Future Work

We now live in a connected world, and the ability to collect and make effective use of multiple

information sources in different formats will pave the way for success in the coming decades. Mining

multiple information sources simultaneously is the key solution to effective knowledge acquisition

from the gigantic data collections we have. It has two major benefits: 1) Although the amount of

data continues to grow at an astounding rate, most of them contain erroneous, corrupted, or missing

entries due to many reasons, such as unreliable data acquisition sources, faulty sensors, and data

collection errors. Combining different channels of information can average out independent errors

in each source, give a global picture of the mined knowledge and thus provide a robust solution

to mining low-quality data; 2) There exists some hidden knowledge that can only be found across

information sources, and thus we must connect different pieces of information in various format

and their different solutions, and pay particular attention to their interactions.

In this thesis, we presented a series of algorithms that take advantage of rich information con-

tained in multiple information sources to help with the task of classification and anomaly detection

in challenging situations. By synthesizing or comparing multiple information channels, we can iden-

tify insightful knowledge and provide users a robust and accurate solution. In this chapter, we come

to the conclusions of this thesis and discuss the future directions of mining multiple information

sources.

9.1 Summary

In this thesis, we presented our solutions for the joint discovery of useful knowledge from multiple

information sources. In general, we made the following contributions.

• Systematic Study of Learning from Multiple Sources
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We proposed to utilize complementary information from multiple sources for better knowledge

discovery and proposed two general learning frameworks. The proposed frameworks can

integrate the available knowledge obtained from all the information sources (Chapter 3), and

identify meaningful and unexpected anomalies from heterogeneous information sources by

exploring inconsistencies (Chapter 6). These two general learning frameworks greatly advance

the studies of learning from multiple sources and can benefit a variety of real applications.

• Benefits of Multiple Source Mining

We demonstrated the benefits of analyzing multiple information sources simultaneously from

both theoretical and experimental perspectives. The advantages of multi-source mining were

shown in a variety of difficult learning scenarios including transfer learning (Chapter 4),

dynamic stream mining (Chapter 5), information networks (Chapter 7) and system debugging

(Chapter 8). We systematically studied and analyzed multi-source mining in both knowledge

synthesization and inconsistency detection, and gave robust solutions to these challenging

problems.

• Algorithms

As multi-source mining provides great benefits to knowledge discovery, we developed several

core algorithms for integrating knowledge from multiple data sources. Our major contri-

butions include a consensus maximization method for multiple source integration (Chapter

3) and a spectral framework to detect inconsistency across multiple sources (Chapter 6).

Based on the same principle to analyze multiple sources simultaneously, we developed a

locally weighted ensemble framework for transfer learning (Chapter 4), a model averaging

approach for stream data classification (Chapter 5), probabilistic modeling of community

outliers (Chapter 7) and a statistical model of measurement correlations in distributed sys-

tems (Chapter 8). These algorithms provide highly efficient and effective solutions for the

several most important data mining problems in multiple information source environment.

• Applications

The proposed methods combine heterogeneous channels of information and thus provide ro-

bust and accurate solutions. We evaluate each proposed approach on both synthetic and
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real-world data, and the experiments show that each approach achieves high accuracy, effi-

ciency, and scalability. The real data sets cover a variety of applications including text mining

(Chapters 3, 4, 6, 7), security and networking (Chapters 3, 5, 8), sentiment analysis (Chapter

3), computer science bibliography (Chapters 3, 6, 7), and social media (Chapters 3, 6). Be-

sides these applications, the algorithms have the potential of being applied to many different

fields where multiple diverse information sources are available to capture object properties

and similarity relationships, for example, healthcare, bioinformatics, business intelligence and

energy efficiency.

9.2 Future Directions

We envision that the infrastructure and technologies for active storage, extraction, exchange and

modeling among multiple heterogeneous information sources will be the center of interests in the

future. In the past decade, many efforts have been devoted to developing methods to obtain

knowledge from multiple information sources, but as new challenges emerge, effective multi-source

mining approaches are in great demand. In this thesis, we presented approaches that address

several challenges including lack of supervision, dynamically evolving data and privacy and security

concerns. To further advance the field, there are several important research issues that should be

explored.

• Lack of Uniform Structured Representation

Data pre-processing is an often neglected but important step in the data mining process.

In heterogeneous multiple sources, data can have inconsistent representations, their values

can be corrupted and noisy, and some of them even don’t have structured representations.

There are numerous applications that lack proper data representations, including chemical

compounds, proteins, image data, social networks and transaction data. A possible solution is

to extract relevant and frequent patterns from multiple sources as structured, consistent and

robust representations. The basic principle is to extract a compact set of frequent patterns

that are relevant to the task, but meanwhile, the extracted patterns should represent the

intrinsic property of each individual source as well as the interactions between sources as

much as possible.
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• Existence of Noisy Information Sources

In our work, we take the relative importance of each data source into consideration, however,

we still assume that each source is at least relevant to the data mining task. In reality,

there may exist multiple noisy, heterogeneous and incomplete information sources and some

of them may be irrelevant to the task. Incorporating such sources into the combination

framework may degrade the performance, and thus a careful filtering procedure should be

performed. Emerging applications bring in new challenges to select the right sources due to

the complicated interactions among sources. This problem shares some basic principles with

feature selection, where a set of representative features are chosen to improve classification

accuracy. The selected features should be relevant to the classification task, and they should

be uncorrelated to provide complimentary knowledge about the task. To generalize the idea

of feature selection to source selection, we need to develop statistical measures to compare

the data distributions, quantify the trustworthiness, as well as select the right subset of

information sources.

• Large-Scale Data

Scalability is another important issue in mining multiple sources since each information source

may possess giga, tera or even peta-bytes of data. It might be natural to apply parallel

computing framework to solve multi-source mining problems, but some data mining tasks may

require interactions among sources and thus we have to design parallel computing methods

that minimize communication costs. In general, there are two ways to conquer the problem:

Separate the data into multiple subsets and distribute them across machines, or compress

the data along certain dimensions or sample a subset of data to reduce the size. While

the first approach ignores the interactions among sources, important details might be lost

during compression in the second approach. Therefore, it is desirable to leverage the two

approaches by distributing and compressing data to a certain extent while communicating

minimal amount of necessary information across machines. To minimize the information loss

and communication cost, we need to carefully select the dimensions along which we compress

data, as well as the data sampling and partition strategy. The decisions would vary according

to the data characteristics and the nature of the task. It is worth investigating the trade-off
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between accuracy and efficiency by developing a cost model, and selecting the appropriate

strategy to parallelize the algorithm according to the model.

• Difficulty in Understanding Mining Results

As data mining is used to solve problems in real practice, it is extremely important to have

the results interpretable and accessible to users with limited background knowledge in data

mining. Users want to know why and where the solutions come from. Different data mining

tasks pursue different goals of post-processing: Interpreting frequent patterns requires a suc-

cinct and meaningful set of summarized patterns, whereas it is ideal to locate the path that

leads to anomalies in anomaly detection. Interpreting results from multiple sources is more

challenging, but can provide a more insightful and vivid knowledge representation. Instead of

learning from raw data, we try to synthesize the obtained knowledge. A variety of techniques,

such as rule mining, clustering, user-guided exploration and other statistical summarization

methods should be combined together to better illustrate and visualize the results, locate the

root causes of the problems as well as provide semantically enriched and in-depth descriptions

of the knowledge obtained from heterogeneous information sources.

It will be exciting to build a next-generation data management and analysis system, which trans-

forms multiple sources of gigantic, noisy, heterogeneous, complicated data into accurate, reliable,

and accessible knowledge. To deliver such a complete solution, there are numerous opportunities

in mining and management of multiple information sources.
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